Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells.
نویسندگان
چکیده
We tested the hypothesis that fluid shear stress (tau) modifies the expression, function, and distribution of junctional proteins [connexin (Cx)43, Cx45, and zona occludens (ZO)-1] in cultured bone cells. Cell lines with osteoblastic (MC3T3-E1 cells) and osteocytic (MLO-Y4 cells) phenotypes were exposed to tau-values of 5 or 20 dyn/cm(2) for 1-3 h. Immunostaining indicated that at 5 dyn/cm(2), the distribution of Cx43, Cx45, and ZO-1 was moderately disrupted at cell membranes; at 20 dyn/cm(2), disruption was more severe. Intercellular coupling was significantly decreased at both shear stress levels. Western blots showed the downregulation of membrane-bound Cx43 and ZO-1 and the upregulation of cytosolic Cx43 and Cx45 at different levels of shear stress. Similarly, Northern blots revealed that expression of Cx43, Cx45, and ZO-1 was selectively up- and downregulated in response to different shear stress levels. These results indicate that in cultured bone cells, fluid shear stress disrupts junctional communication, rearranges junctional proteins, and determines de novo synthesis of specific connexins to an extent that depends on the magnitude of the shear stress. Such disconnection from the bone cell network may provide part of the signal whereby the disconnected cells or the remaining network initiate focal bone remodeling.
منابع مشابه
Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions.
Mechanical stimulation of bone induces new bone formation in vivo and increases the metabolic activity and gene expression of osteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission of mechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts caused reor...
متن کاملMineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces.
In this study we report on direct involvement of fluid shear stresses on the osteoblastic differentiation of marrow stromal cells. Rat bone marrow stromal cells were seeded in 3D porous titanium fiber mesh scaffolds and cultured for 16 days in a flow perfusion bioreactor with perfusing culture media of different viscosities while maintaining the fluid flow rate constant. This methodology allowe...
متن کاملThe effect of resistance training and date pollen extract on bone tissue density and osteoblast cell proliferation in young male rats
Extended Abstract 1.Introduction One of the tissues that is affected by physical activity is bone. Bone is one of the tissues that needs to receive mechanical load to have normal function as a key factor in strengthening bone mass (2). Evidence shows that the mechanical load resulting from physical activity activates a set of proteins involved in the process of osteoblast activation and inhib...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملEffect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions
Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 284 2 شماره
صفحات -
تاریخ انتشار 2003