Phase behavior of the hard-sphere Maier-Saupe fluid under spatial confinement.

نویسندگان

  • N G Almarza
  • C Martín
  • E Lomba
چکیده

The Maier-Saupe hard-sphere fluid is one of the simplest models that accounts for the isotropic-nematic transition characteristic of liquid crystal phases. At low temperatures the model is known to present a gas-liquid-like transition with a large difference between the densities of the coexistence phases, whereas at higher temperature the transition becomes a weak first-order transition resembling the typical order-disorder (nematic-isotropic) phase change of liquid crystals. Spatial dimensionality directly conditions the character of the orientational phase change (i.e., the high temperature transition), that goes from a first-order transition in the purely three-dimensional case, to a Berezinskii-Kosterlitz-Thouless-like continuous transition which occurs when the three dimensional Maier-Saupe spins are constrained to lie on a plane. In the latter instance, the ordered phase is not endowed with true long-range order. In this work we investigate how the continuous transition transforms into a true first-order phase change, by analyzing the phase behavior of a system of three dimensional Maier-Saupe hard spheres confined between two parallel plates, with separations ranging from the quasi-two-dimensional regime to the bulk three-dimensional limit. Our results indicate that spatial confinement in one direction induces the change from first order to a continuous transition with a corresponding decrease of the transition temperatures. As to the gas-liquid transition, the estimated "critical" temperatures and densities also decrease as the fluid is confined, in agreement with previous results for other simple systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase behavior of a hard sphere Maier-Saupe nematogenic system in three dimensions.

We present a detailed computer simulation and integral equation study of the phase behavior of a nematogenic system composed of hard spheres with embedded three-dimensional Maier-Saupe spins. For this well-known system, we map the gas-liquid equilibrium, which is coupled to a first-order isotropic-nematic transition. The anisotropic integral equation theory is found to yield excellent agreement...

متن کامل

Axial Symmetry and Classification of Stationary Solutions of Doi-onsager Equation on the Sphere with Maier-saupe Potential

We study the structure of stationary solutions to the Doi-Onsager equation with Maier-Saupe potential on the sphere, which arises in the modelling of rigid rod-like molecules of polymers. The stationary solutions are shown to be necessarily a set of axially symmetric functions, and a complete classification of parameters for phase transitions to these stationary solutions is obtained. It is sho...

متن کامل

Solvation Force in Hard Ellipsoid Molecular Liquids with Rod-Sphere and Rod- Surface Interactions

In previous work, one of us calculated the Solvation force of hard ellipsoid fluid with hard Gaussian overlap potential using hard needle wall interaction and non-linear equation proposed by Grimson- Rickyazen. In present work, using density functional theory and extended restricted orientation model, the solvation force of hard ellipsoid fluid in presence of more realistic rod- sphere and rod-...

متن کامل

Maier-Saupe theory in four dimensions.

Maier-Saupe theory is the canonical mean field description of thermotropic nematic liquid crystals. In this paper, we examine the predictions of the theory in four spatial dimensions. Representations of the order parameter tensor and the existence of new phases are discussed. The phase diagram, based on numerical solution of the self-consistent equations and Landau theory, is presented. Orienta...

متن کامل

Phase transition and crossover behavior of colloidal fluids under confinement

We report a molecular simulation study on the non-monotonic behavior of critical temperature, Tcp, of a confined Yukawa fluid. Close to the adhesive hard sphere (AHS) range of the surface–fluid interaction, Tcp monotonically increases with increasing surface–fluid interaction range. Subsequently, after a certain threshold value, depending on the surface interaction well depth, Tcp decreases mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009