Modulation of cortical and pyramidal tract induced motor responses by electrical stimulation of the basal ganglia.
نویسندگان
چکیده
Two general mechanisms based on anatomical studies are possible for modulation of motor activity by the caudate nucleus and globus pallidus. These mechanisms are: (1) modulation of the output of cortical neurons that exert motor influences; and (2) modulation of subcortical neurons that exert motor influences. Differentiation between these two mechanisms was accomplished in the present study by two experimental approaches, both of which employed the conditioning-test paradigm. The first approach was an investigation of caudate nucleus or globus pallidus modulation (conditioning stimulus) of flexor responses of the anterior tibialis muscle elicited by electrical stimulation of the sensorimotor cortex (test stimulus) or pyramidal tract (test stimulus). These investigations were carried out in the intact and in decorticate cats. The second approach was an analysis of modulation or cortically induced pyramidal tract responses (direct and indirect, D-I potentials) by conditioning shock trains delivered to various loci within the caudate nucleus or globus pallidus. Both approaches were designed to determine whixh inhibitory and facilitatory motor influences of the basal ganglia occurred at a cortical or subcortical level. Simultaneous stimulation of a locus within the caudate nucleus and the sensorimotor cortex evoked either an enhancement, reduction or no alteration of the cortically induced increase in flexor responses (measured by Ia afferent activity, EMG, myogram). In contrast, no inhibitory influences occurred from caudate nucleus stimulation upon pyramidal tract induced flexor responses in either the intact or decorticate preparation. Inhibitory loci were distributed toward the rostral portion of the caudate nucleus, whereas facilitatory loci were distributed throughout; this distribution was statistically significant (chi2; P less than 0.01). Only enhancement or no influence upon cortical induced or pyramidal tract induced responses were obtained by conditioning stimuli to the globus pallidus. In the unanesthetized but immobilized cat, trains of shocks delivered to the caudate nucleus enhanced, reduced or had no influence upon the cortically evoked direct (D) and indirect (I) potentials recorded in the bulbar pyramidal tract. The distribution of facilitatory and inhibitory loci was organized in a similar fashion as in theanesthetized preparation. From these observations, a model was proposed in which the output of the caudate nucleus exerts both facilitatory or inhibitory modulation of the tonically active globus pallidus cells. The latter in turn predominantly or exclusively facilitate output of pyramidal tract neurons as well as the output of subcortical structures; both effects facilitate motor responses at the spinal level.
منابع مشابه
Subthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat
Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramid...
متن کاملEffect of locus ceruleus phasic electrical stimulation on responses of barrel cortical cells to controlled mechanical displacement in rats
Behavioral and electrophysiological evidences have shown that locus ceruleus (LC) is involved in different tasks including modulation of sensory processing and shift of attention. In the present study, single unit responses of barrel cortical cells was recorded following controlled mechanical displacement of the principal and peripheral vibrissae in adult rats (100 trials of 200 µm deflection f...
متن کاملMEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION
Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...
متن کاملFinal Accepted Version
Motor cortical modulation of cutaneous reflex responses in the hindlimb of the intact cat. Summary We have used the technique of spatial facilitation to examine the interactions between the signals conveyed by the corticospinal tract and those of cutaneous afferents in the hindlimb of the intact, walking cat. Microstimulation was applied to 20 cortical sites in the hindlimb representation of th...
متن کاملMotor cortical modulation of cutaneous reflex responses in the hindlimb of the intact cat.
We have used the technique of spatial facilitation to examine the interactions between the signals conveyed by the corticospinal tract and those of cutaneous afferents in the hindlimb of the intact, walking cat. Microstimulation was applied to 20 cortical sites in the hindlimb representation of the motor cortex and to three different cutaneous nerves innervating the hindpaw in four cats. Condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 85 3 شماره
صفحات -
تاریخ انتشار 1975