Real-Time EEG-Based Emotion Recognition and Its Applications
نویسندگان
چکیده
Since emotions play an important role in the daily life of human beings, the need and importance of automatic emotion recognition has grown with increasing role of human computer interface applications. Emotion recognition could be done from the text, speech, facial expression or gesture. In this paper, we concentrate on recognition of “inner” emotions from electroencephalogram (EEG) signals. We propose real-time fractal dimension based algorithm of quantification of basic emotions using Arousal-Valence emotion model. Two emotion induction experiments with music stimuli and sound stimuli from International Affective Digitized Sounds (IADS) database were proposed and implemented. Finally, the real-time algorithm was proposed, implemented and tested to recognize six emotions such as fear, frustrated, sad, happy, pleasant and satisfied. Real-time applications were proposed and implemented in 3D virtual environments. The user emotions are recognized and visualized in real time on his/her avatar adding one more so-called “emotion dimension” to human computer interfaces. An EEGenabled music therapy site was proposed and implemented. The music played to the patients helps them deal with problems such as pain and depression. An EEG-based web-enable music player which can display the music according to the user’s current emotion states was designed and implemented.
منابع مشابه
A Real-time Fractal-based Brain State Recognition from EEG and its Applications
EEG-based immersion is a new direction in research and development on human computer interfaces. It has attracted recently more attention from the research community and industry as wireless EEG reading devices became easily available on the market. EEG-based technology has been applied in anaesthesiology, psychology, serious games or even in marketing. As EEG signal is considered to have a fra...
متن کاملEEG-Based Personalized Digital Experience
To make human computer interfaces more immersive and intuitive, a new dimension could be added. Real-time brain state recognition from EEG including emotion recognition and level of concentration recognition would make an access to information more adaptive and personalized. Modern EEG techniques give us an easy and portable way to monitor brain activities by using suitable signal processing an...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملبهبود تشخیص خودکار احساسات با استفاده از سیگنالEEG
Emotions play an important role in daily life of human, so the need and importance of automatic emotion recognition have grown with increasing role of Human Computer Interaction (HCI) applications. Since emotion recognition using EEG can show inner emotions, this method is more attention from other ways. In consideration to lack of emotion induction collection for doing such researches at Irani...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trans. Computational Science
دوره 12 شماره
صفحات -
تاریخ انتشار 2011