Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse.
نویسندگان
چکیده
Human arylacetamide deacetylase (AADAC) is a major esterase responsible for the hydrolysis of clinical drugs such as flutamide, phenacetin, and rifampicin. Thus, AADAC is considered to be a relevant enzyme in preclinical drug development, but there is little information about species differences with AADAC. This study investigated the species differences in the tissue distribution and enzyme activities of AADAC. In human, AADAC mRNA was highly expressed in liver and the gastrointestinal tract, followed by bladder. In rat and mouse, AADAC mRNA was expressed in liver at the highest level, followed by the gastrointestinal tract and kidney. The expression levels in rat tissues were approximately 7- and 10-fold lower than those in human and mouse tissues, respectively. To compare the catalytic efficiency of AADAC among three species, each recombinant AADAC was constructed, and enzyme activities were evaluated by normalizing with the expression levels of AADAC. Flutamide and phenacetin hydrolase activities were detected by the recombinant AADAC of all species. In flutamide hydrolysis, liver microsomes of all species showed similar catalytic efficiencies, despite the lower AADAC mRNA expression in rat liver. In phenacetin hydrolysis, rat liver microsomes showed approximately 4- to 6.5-fold lower activity than human and mouse liver microsomes. High rifampicin hydrolase activity was detected only by recombinant human AADAC and human liver and jejunum microsomes. Taken together, the results of this study clarified the species differences in the tissue distribution and enzyme activities of AADAC and facilitate our understanding of species differences in drug hydrolysis.
منابع مشابه
Characterization of Species Differences in Tissue Diltiazem Deacetylation Identifies Ces2a as a Rat-Specific Diltiazem Deacetylase.
Diltiazem, a calcium channel blocker, is mainly metabolized via demethylation or deacetylation in humans. Diltiazem demethylation is catalyzed by cytochrome P450 2D6 and 3A4. Although it was previously reported that the area under the curve ratio of deacetyldiltiazem to diltiazem after oral dosing with diltiazem in rats was sevenfold higher than in humans, the molecular mechanisms underlying th...
متن کاملHistone deacetylase inhibitory and cytotoxic activities of the constituents from the roots of three species of Ferula
Objective(s): Histone deacetylase inhibitory and cytotoxic activities of 18 naturally occuring terpenoids (ferutinin, stylosin, tschimgine and guaiol), coumarins (umbelliprenin, farnesiferone B, conferone, feselol, ligupersin A, conferdione, conferoside) and sulfur-containing derivatives (latisulfies A-E, persicasulphides A and C) from the roots of three species of Ferula (Ferula latisecta, Fer...
متن کاملIsolation and characterization of arylacetamide deacetylase in cynomolgus macaques
Arylacetamide deacetylase (AADAC), a microsomal serine esterase, hydrolyzes drugs, such as flutamide, phenacetin and rifampicin. Because AADAC has not been fully investigated at molecular levels in cynomolgus macaques, the non-human primate species widely used in drug metabolism studies, cynomolgus AADAC cDNA was isolated and characterized. The deduced amino acid sequence, highly homologous (92...
متن کاملContributions of arylacetamide deacetylase and carboxylesterase 2 to flutamide hydrolysis in human liver.
Flutamide, an antiandrogen drug, is widely used for the treatment of prostate cancer. The major metabolic pathways of flutamide are hydroxylation and hydrolysis. The hydrolyzed metabolite, 5-amino-2-nitrobenzotrifluoride (FLU-1), is further metabolized to N-hydroxy FLU-1, an assumed hepatotoxicant. Our previous study demonstrated that arylacetamide deacetylase (AADAC), one of the major serine e...
متن کاملShort Communication Contributions of Arylacetamide Deacetylase and Carboxylesterase 2 to Flutamide Hydrolysis in Human Liver
Flutamide, an antiandrogen drug, is widely used for the treatment of prostate cancer. The major metabolic pathways of flutamide are hydroxylation and hydrolysis. The hydrolyzed metabolite, 5-amino2-nitrobenzotrifluoride (FLU-1), is further metabolized to N-hydroxy FLU-1, an assumed hepatotoxicant. Our previous study demonstrated that arylacetamide deacetylase (AADAC), one of the major serine es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2012