Features of entrainment of spinal pattern generators for locomotor activity in the lamprey spinal cord.

نویسندگان

  • A D McClellan
  • K A Sigvardt
چکیده

The in vitro lamprey spinal cord contains a "central pattern generator" (CPG) that can generate locomotor activity with excitatory amino acids added to the bath. The motor pattern can be entrained by imposed rhythmic bending of either the caudal or rostral end of the notochord/spinal cord. In the present study, the quantitative and mechanistic features of entrainment were investigated. Increasing the amplitude of the imposed movement increased the range of frequencies over which entrainment occurred. Brief, pulsed, imposed movements could reset the locomotor rhythm. During entrainment at different imposed movement frequencies, the burst duration was a constant proportion of about 35% of the cycle time. The intersegmental phase lag, which is usually constant at about 0.01 during locomotion, decreased significantly with caudal imposed movements. A small increase in the phase lags was observed with rostral imposed movements. In low-calcium Ringer's, briefly bending the notochord/spinal cord activated intraspinal mechanoreceptors and elicited ascending and descending unit activity in lateral spinal fascicles many segments from the point of bending. However, this ascending or descending movement-related activity was insufficient to fully entrain the locomotor rhythm, since blocking the pattern in the region of bending abolished 1:1 entrainment. The mechanoreceptors appear to act locally on the CPG networks, since interrupting the ascending or descending movement-related activity with lesions of the lateral fascicles did not abolish entrainment. In contrast, stripping the very lateral margins of the spinal cord in the region of bending did abolish entrainment, presumably by destroying the transduction region of the mechanoreceptors. The data, taken together, suggest that the mechanoreceptors entrain the local CPG networks, and this timing information is then distributed to the other parts of the spinal motor networks through the coordinating system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A . D . McClellan and W . Jang resetting , entrainment , and computer modeling generators for locomotion in the lamprey spinal cord : Mechanosensory inputs to the central pattern

You might find this additional info useful... SUMMARY AND CONCLUSIONS 1. Mechanoreceptors in the lamprey spinal cord have inputs to the central pattern generator (CPG) for locomotion. In the present study, imposed sinusoidal and pulsed movements were applied to the end of the in vitro lamprey spinal cord to excite the mechanoreceptors so that the relationship between entrainment and resetting o...

متن کامل

Flexibility in the patterning and control of axial locomotor networks in lamprey.

In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. ...

متن کامل

The requirement of presynaptic metabotropic glutamate receptors for the maintenance of locomotion.

Spinal circuits known as central pattern generators maintain vertebrate locomotion. In the lamprey, the contralaterally alternating ventral root activity that defines this behavior is driven by ipsilateral glutamatergic excitation (Buchanan and Grillner, 1987) coupled with crossed glycinergic inhibition (Buchanan, 1982; Alford and Williams, 1989). These mechanisms are distributed throughout the...

متن کامل

Towards a Spinal Neuroprosthesis: Restoring Locomotion after Spinal Cord Injury

The overall goal of this work is to develop the core framework for an implantable neuroprosthetic device that can restore locomotion after a severe spinal cord injury (SCI) causes paralysis. Our approach to this problem relies on a combination of the biological central pattern generator (CPG) for locomotion and an artificial silicon CPG. In particular, we propose that an artificial CPG can be u...

متن کامل

Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion.

In fishes, undulatory swimming is produced by sets of spinal interneurons constituting a central pattern generator (CPG). The CPG generates waves of muscle activity that travel from head to tail, which then bend the body into wave shapes that also travel from head to tail. In many fishes, the wavelengths of the neural and mechanical waves are different, resulting in a rostral-to-caudal gradient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 1988