Repair of triplex-directed DNA alkylation by nucleotide excision repair.
نویسندگان
چکیده
Triplex-forming oligonucleotides (TFOs) are being investigated as highly specific DNA binding agents to inhibit the expression of clinically relevant genes. So far, they have been shown to inhibit transcription from the HER-2/neu gene in vitro, whereas their use in vivo has been studied to a limited extent. This study uses a TFO-chlorambucil (chl) conjugate capable of forming site-specific covalent guanine adducts within the HER-2/neu promoter. We demonstrate that nucleotide excision repair (NER) represents a mechanism of cellular resistance to TFO-directed DNA alkylation. In vitro repair assays demonstrate that triplex-directed chl-guanine adducts are substrates for repair by NER competent cell extracts but not XP12BE cell extracts deficient in NER. The degree of repair is estimated by a ligation-mediated polymerase chain reaction with a pre-formed triplex in a plasmid transfected into repair competent cells, indicating that approximately 25% of the guanine adducts are removed after 24 h. These data indicate that guanine adducts from TFO-directed alkylation are a substrate for NER and that DNA repair is a significant barrier to the intracellular persistence of target gene binding by TFOs.
منابع مشابه
Mechanism of RNA polymerase II stalling by DNA alkylation
Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and ...
متن کاملContribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe.
DNA damage is unavoidable, and organisms across the evolutionary spectrum possess DNA repair pathways that are critical for cell viability and genomic stability. To understand the role of base excision repair (BER) in protecting eukaryotic cells against alkylating agents, we generated Schizosaccharomyces pombe strains mutant for the mag1 3-methyladenine DNA glycosylase gene. We report that S. p...
متن کاملEfficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease
Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen-modified TFOs indicated that the TFO inhibits cleavage by Uvr...
متن کاملHuman XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks
DNA interstrand crosslinks (ICLs) represent a severe form of damage that blocks DNA metabolic processes and can lead to cell death or carcinogenesis. The repair of DNA ICLs in mammals is not well characterized. We have reported previously that a key protein complex of nucleotide excision repair (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-spe...
متن کاملTriple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway.
The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 29 21 شماره
صفحات -
تاریخ انتشار 2001