Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum.

نویسندگان

  • Robert A Spooner
  • Peter D Watson
  • Catherine J Marsden
  • Daniel C Smith
  • Katherine A H Moore
  • Jonathon P Cook
  • J Michael Lord
  • Lynne M Roberts
چکیده

Cells expressing ricin B chain within the secretory pathway are significantly more resistant to intoxication by ricin holotoxin but not to other cytotoxins that exploit similar endocytic routes to the cytosol. Furthermore, cells expressing the related B chain of abrin are protected against both incoming abrin and ricin. These phenotypes can be correlated with the abilities of the respective B chains to form disulphide-linked A-B holotoxins, since abrin B chain forms heterodimers with either abrin or ricin A chains, whereas ricin B chain forms heterodimers with ricin A chain only. In the ricin B-expressing cells, this newly made lectin disappears with biphasic kinetics comprising a retention phase followed by slow turnover and disposal after disengagement from calnexin cycle components. Interference with ricin cytotoxicity occurs during the early retention phase when ricin B chain is associated with PDI (protein disulphide-isomerase). The data show that retrotranslocation of incoming toxin is impeded by PDI-catalysed formation of heterodimers between endogenous B and A chains derived from reduced holotoxin, thus proving that reduction of ricin occurs in the endoplasmic reticulum. In contrast with other toxins, ricin does not appear to require either proteolytic cleavage or unfolding for PDI-catalysed reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein disulphide isomerase protects against protein aggregation and is S-nitrosylated in amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis is a rapidly progressing fatal neurodegenerative disease characterized by the presence of protein inclusions within affected motor neurons. Endoplasmic reticulum stress leading to apoptosis was recently recognized to be an important process in the pathogenesis of sporadic human amyotrophic lateral sclerosis as well as in transgenic models of mutant superoxide dismu...

متن کامل

The human protein disulphide isomerase family: substrate interactions and functional properties.

The process of disulphide bond formation in the endoplasmic reticulum of eukaryotic cells was one of the first mechanisms of catalysed protein folding to be discovered. Protein disulphide isomerase (PDI) is now known to catalyse all of the reactions that are involved in native disulphide bond formation, but despite more than 40 years of study, its mechanism of action is still not fully understo...

متن کامل

Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation.

The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown o...

متن کامل

The role of protein disulphide isomerase in the microsomal triacylglycerol transfer protein does not reside in its isomerase activity.

The microsomal triacylglycerol transfer protein (MTP), an alpha beta dimer, is obligatory for the assembly of apoB-containing lipoproteins in liver and intestinal cells. The beta subunit is identical with protein disulphide isomerase, a 58 kDa endoplasmic reticulum luminal protein involved in ensuring correct disulphide bond formation of newly synthesized proteins. We report here the expression...

متن کامل

Defining the protein-protein interactions of the mammalian endoplasmic reticulum oxidoreductases (EROs).

The ER (endoplasmic reticulum) is the site of protein folding for all eukaryotic secreted and plasma membrane proteins. Disulphide bonds are formed in many of these proteins through a dithiol-disulphide exchange chain comprising two types of protein catalysts: PDI (protein disulphide-isomerase) and ERO (ER oxidoreductase) proteins. This review will examine what we know about ERO function, and w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 383 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004