HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro

نویسندگان

  • Mihail Hristov
  • Wolfgang Erl
  • Stefan Linder
  • Peter C. Weber
چکیده

Endothelial progenitor cells (EPCs) play a role in the repair of ischemic or injured tissue. Because endothelial injury can be associated with apoptosis, we have investigated whether apoptotic bodies from mature endothelial cells (ECs) may affect growth and differentiation of EPCs in vitro. A 24-hour incubation of isolated human EPCs with apoptotic bodies-rich medium (ABRM) from ECs led to a significant increase in the number of spindleshaped attached cells. EPCs were characterized by DiI-Ac-LDL/lectin staining and measurement of CD34 and kinase insert domain receptor (KDR) expression. The treatment with ABRM resulted in a 2fold increase of DiI-Ac-LDL/lectinpositive cells and up-regulation of CD34 (22% 2% versus 13% 3%, P < .05 and KDR (49% 12% versus 19% 7%, P < .05). Fluorescence and confocal laser microscopy demonstrated the uptake of apoptotic bodies by the EPCs. Apoptotic bodies-depleted medium had no effect, whereas the incubation with suspension of apoptotic bodies induced effects similar to those of ABRM. Our results suggest that apoptotic bodies from ECs are taken up by EPCs, increasing their number and differentiation state. Such a mechanism may facilitate the repair of injured endothelium and may represent a new signaling pathway between progenitor and damaged somatic cells. (Blood. 2004;104:2761-2766)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Junctional adhesion molecule A expressed on human CD34+ cells promotes adhesion on vascular wall and differentiation into endothelial progenitor cells.

OBJECTIVE To investigate the role of junctional adhesion molecule A (JAM-A) on adhesion and differentiation of human CD34(+) cells into endothelial progenitor cells. METHODS AND RESULTS Tissue healing and vascular regeneration is a multistep process requiring firm adhesion of circulating progenitor cells to the vascular wall and their further differentiation into endothelial cells. The role o...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Engulfment of apoptotic cells by microvascular endothelial cells induces proinflammatory responses

Circulating endothelial cells (CECs) have been detected in a variety of vascular disorders, but their interactions with healthy endothelium remain unknown. The aim of this study was to evaluate the response of human endothelial cells (ECs) to apoptotic or necrotic ECs in an in vitro model and to delineate pathogenetic pathways. Here we show that incubation of the human microvascular endothelial...

متن کامل

Hemostasis, Thrombosis, and Vascular Biology

Endothelial progenitor cells (EPCs) can be isolated from adult peripheral and umbilical cord blood and expanded exponentially ex vivo. In contrast, human umbilical vein endothelial cells (HUVECs) or human aortic endothelial cells (HAECs) derived from vessel walls are widely considered to be differentiated, mature endothelial cells (ECs). However, similar to adultand cord blood–derived EPCs, HUV...

متن کامل

Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line.

OBJECTIVE Recent studies have illustrated that mesenchymal stem cells possess the potential to differentiate along an endothelial lineage, but the effect of shear on mesenchymal differentiation is unknown. Thus, we developed an in vitro shear stress system to examine the relationship between shear stress and the endothelial differentiation of a murine embryonic mesenchymal progenitor cell line,...

متن کامل

Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo.

OBJECTIVE To develop an embryoid body-free directed differentiation protocol for the rapid generation of functional vascular endothelial cells derived from human embryonic stem cells (hESCs) and to assess the system for microRNA regulation and angiogenesis. METHODS AND RESULTS The production of defined cell lineages from hESCs is a critical requirement for evaluating their potential in regene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004