Photoconductive Hybrid Films via Directional SelfAssembly of C60 on Aligned Carbon Nanotubes

نویسندگان

  • Eric R. Meshot
  • Keval D. Patel
  • Sameh Tawfick
  • K. Anne Juggernauth
  • Mostafa Bedewy
  • Eric A. Verploegen
  • Michaël F. L. De Volder
  • John Hart
چکیده

Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C60 rods from solution. In these hybrid films, the C60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazingincidence X-ray diffraction (GIXD) shows that the crystal structure of the C60 rods is not perturbed by the CNTs. Growth kinetics of the C60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C60 and CNTs. Finally, it is shown how hybrid C60–CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 105 A W−1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Integration of Horizontally Aligned Carbon Nanotube–c60 Films for Uv Sensors

Carbon nanotubes (CNTs) are promising for microsystems applications, yet few techniques effectively enable integration of CNTs with precise control of placement and alignment of the CNTs at sufficiently high densities necessary for compelling mechanical or electrical performance. This paper explores new methods for scalable integration of dense, horizontally aligned (HA) CNTs with patterned ele...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Thin films of C60 peapods and double wall carbon nanotubes

Thin films of SWCNTs were prepared from toluene suspension of single wall carbon nanotubes. The material was dropped on silicon and platinum surfaces with a controlled thickness. Filling with C60 and DWCNT – transformation of the films was performed. Multifrequency Raman spectroscopy was used to follow the peapod formation process and double wall transformation of the tubes. An efficient fillin...

متن کامل

Surfactant-free water-processable photoconductive all-carbon composite.

Heterojunctions between different graphitic nanostructures, including fullerenes, carbon nanotubes and graphene-based sheets, have attracted significant interest for light to electrical energy conversion. Because of their poor solubility, fabrication of such all-carbon nanocomposites typically involves covalently linking the individual constituents or the extensive surface functionalization to ...

متن کامل

Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals

We demonstrate broadband tunability of light emission from dense (6,5) single-walled carbon nanotube thin films via efficient coupling to periodic arrays of gold nanodisks that support surface lattice resonances (SLRs). We thus eliminate the need to select single-walled carbon nanotubes (SWNTs) with different chiralities to obtain narrow linewidth emission at specific near-infrared wavelengths....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011