Maximal integral point sets over 2

نویسندگان

  • Andrey Radoslavov Antonov
  • Sascha Kurz
چکیده

Geometrical objects with integral side lengths have fascinated mathematicians through the ages. We call a set P = {p1, . . . , pn} ⊂ Z2 a maximal integral point set over Z2 if all pairwise distances are integral and every additional point pn+1 destroys this property. Here we consider such sets for a given cardinality and with minimum possible diameter. We determine some exact values via exhaustive search and give several constructions for arbitrary cardinalities. Since we cannot guarantee the maximality in these cases we describe an algorithm to prove or disprove the maximality of a given integral point set. We additionally consider restrictions as no three points on a line and no four points on a circle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal integral point sets in affine planes over finite fields

Motivated by integral point sets in the Euclidean plane, we consider integral point sets in affine planes over finite fields. An integral point set is a set of points in the affine plane F2q over a finite field Fq, where the formally defined squared Euclidean distance of every pair of points is a square in Fq. It turns out that integral point sets over Fq can also be characterized as affine poi...

متن کامل

Inclusion-maximal integral point sets over finite fields

We consider integral point sets in affine planes over finite fields. Here an integral point set is a set of points in F2q where the formally defined Euclidean distance of every pair of points is an element of Fq. From another point of view we consider point sets over F2q with few and prescribed directions. So this is related to Rédei’s work. Another motivation comes from the field of ordinary i...

متن کامل

Maximal Integral Point Sets over Z2 Andrey Radoslavov Antonov and Sascha Kurz

Geometrical objects with integral side lengths have fascinated mathematicians through the ages. We call a setP = {p1, . . . , pn} ⊂ Z2 a maximal integral point set over Z2 if all pairwise distances are integral and every additional point pn+1 destroys this property. Here we consider such sets for a given cardinality and with minimum possible diameter. We determine some exact values via exhausti...

متن کامل

Integral point sets over finite fields

We consider point sets in the affine plane Fq where each Euclidean distance of two points is an element of Fq . These sets are called integral point sets and were originally defined in m-dimensional Euclidean spaces Em. We determine their maximal cardinality I(Fq , 2). For arbitrary commutative rings R instead of Fq or for further restrictions as no three points on a line or no four points on a...

متن کامل

On Fuzzy Volterra Integral Equations with Deviating Arguments

In 1982, Dubois and Prade [4, 5] first introduced the concept of integration of fuzzy functions. Kaleva [7] studied the measurability and integrability for the fuzzy set-valued mappings of a real variable whose values are normal, convex, upper semicontinuous, and compactly supported by fuzzy sets in Rn. Existence of solutions of fuzzy integral equations has been studied by several authors [1, 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2010