Solution of quantum Langevin equation: approximations, theoretical and numerical aspects.

نویسندگان

  • Dhruba Banerjee
  • Bidhan Chandra Bag
  • Suman Kumar Banik
  • Deb Shankar Ray
چکیده

Based on a coherent state representation of noise operator and an ensemble averaging procedure using Wigner canonical thermal distribution for harmonic oscillators, a generalized quantum Langevin equation has been recently developed [Phys. Rev. E 65, 021109 (2002); 66, 051106 (2002)] to derive the equations of motion for probability distribution functions in c-number phase-space. We extend the treatment to explore several systematic approximation schemes for the solutions of the Langevin equation for nonlinear potentials for a wide range of noise correlation, strength and temperature down to the vacuum limit. The method is exemplified by an analytic application to harmonic oscillator for arbitrary memory kernel and with the help of a numerical calculation of barrier crossing, in a cubic potential to demonstrate the quantum Kramers' turnover and the quantum Arrhenius plot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Langevin Simulations

This chapter reviews numerical simulations of quantum field theories based on stochastic quantization and the Langevin equation. The topics discussed include renormalization of finite stepsize algorithms, Fourier acceleration, and the relation of the Langevin equation to hybrid stochastic algorithms and hybrid Monte Carlo. Invited chapter to appear in the special supplement “Stochastic Quantiza...

متن کامل

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations

This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...

متن کامل

Numerical Aspects of Bubble Nucleation

The effective potential determines the vacuum state of a quantum field theory. When radiative corrections are included or, if one constructs the finite temperature version of field theory the (effective)potential may have two minimum, one of which is lower than the other. The ’higher’ minimum is referred to as the false or metastable vacuum. The global minimum is the true vacuum state of the th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 19  شماره 

صفحات  -

تاریخ انتشار 2004