Global Convergence of Delayed Neural Network Systems
نویسندگان
چکیده
In this paper, without assuming the boundedness, strict monotonicity and differentiability of the activation functions, we utilize a new Lyapunov function to analyze the global convergence of a class of neural networks models with time delays. A new sufficient condition guaranteeing the existence, uniqueness and global exponential stability of the equilibrium point is derived. This stability criterion imposes constraints on the feedback matrices independently of the delay parameters. The result is compared with some previous works. Furthermore, the condition may be less restrictive in the case that the activation functions are hyperbolic tangent.
منابع مشابه
A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملGlobal output convergence for delayed recurrent neural networks under impulsive effects
In this paper, we investigate convergence of state output for a class of delayed recurrent neural networks with impulsive effects. Based on properties of time-varying inputs and monotonicity of activation function, we establish some sufficient conditions to guarantee output convergence of the networks in which state variable subjected to impulsive displacements at fixed moments of time.
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملA Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis
In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-laye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of neural systems
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2003