Distributive Semilattices as Retracts of Ultraboolean Ones; Functorial Inverses without Adjunction

نویسندگان

  • FRIEDRICH WEHRUNG
  • F. WEHRUNG
چکیده

A 〈∨, 0〉-semilattice is ultraboolean, if it is a directed union of finite Boolean 〈∨, 0〉-semilattices. We prove that every distributive 〈∨, 0〉-semilattice is a retract of some ultraboolean 〈∨, 0〉-semilattice. This is established by proving that every finite distributive 〈∨, 0〉-semilattice is a retract of some finite Boolean 〈∨, 0〉-semilattice, and this in a functorial way. This result is, in turn, obtained as a particular case of a category-theoretical result that gives sufficient conditions, for a functor Π, to admit a right inverse. The particular functor Π used for the abovementioned result about ultraboolean semilattices has neither a right nor a left adjoint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functorial Liftings of Distributive Semilattices by Distances of Small Type

We prove that every distributive algebraic lattice with at most א1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The א1 bound is optimal, as we find a distributive algebraic lattice D with א2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence n...

متن کامل

3 N ov 2 00 7 POSET REPRESENTATIONS OF DISTRIBUTIVE SEMILATTICES

We prove that for every distributive ∨, 0-semilattice S, there are a meet-semilattice P with zero and a map µ : P × P → S such that µ(x, z) ≤ µ(x, y) ∨ µ(y, z) and x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P , together with the following conditions: (P1) µ(v, u) = 0 implies that u = v, for all u ≤ v in P. (P2) For all u ≤ v in P and all a, b ∈ S, if µ(v, u) ≤ a ∨ b, then there are a pos...

متن کامل

Poset representations of distributive semilattices

We prove that for every distributive 〈∨, 0〉-semilattice S, there are a meet-semilattice P with zero and a map μ : P × P → S such that μ(x, z) ≤ μ(x, y)∨μ(y, z) and x ≤ y implies that μ(x, y) = 0, for all x, y, z ∈ P , together with the following conditions: (P1) μ(v, u) = 0 implies that u = v, for all u ≤ v in P . (P2) For all u ≤ v in P and all a,b ∈ S, if μ(v, u) ≤ a ∨ b, then there are a pos...

متن کامل

. R A ] 4 J an 2 00 6 POSET REPRESENTATIONS OF DISTRIBUTIVE SEMILATTICES

We prove that for any distributive ∨, 0-semilattice S, there are a meet-semilattice P with zero and a map µ : P × P → S such that µ(x, z) ≤ µ(x, y) ∨ µ(y, z) and x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P , together with the following conditions: (i) µ(v, u) = 0 implies that u = v, for all u ≤ v in P. (ii) For all u ≤ v in P and all a, b ∈ S, if µ(v, u) = a ∨ b, then there are a positi...

متن کامل

ar X iv : m at h / 06 01 05 8 v 2 [ m at h . R A ] 1 3 Fe b 20 06 POSET REPRESENTATIONS OF DISTRIBUTIVE SEMILATTICES

We prove that for any distributive ∨, 0-semilattice S, there are a meet-semilattice P with zero and a map µ : P × P → S such that µ(x, z) ≤ µ(x, y) ∨ µ(y, z) and x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P , together with the following conditions: (i) µ(v, u) = 0 implies that u = v, for all u ≤ v in P. (ii) For all u ≤ v in P and all a, b ∈ S, if µ(v, u) = a ∨ b, then there are a positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005