Auditory detection and discrimination in deaf cats: psychophysical and neural thresholds for intracochlear electrical signals.
نویسندگان
چکیده
More than 30,000 hearing-impaired human subjects have learned to use cochlear implants for speech perception and speech discrimination. To understand the basic mechanisms underlying the successful application of contemporary speech processing strategies, it is important to investigate how complex electrical stimuli delivered to the cochlea are processed and represented in the central auditory system. A deaf animal model has been developed that allows direct comparison of psychophysical thresholds with central auditory neuronal thresholds to temporally modulated intracochlear electrical signals in the same animals. Behavioral detection thresholds were estimated in neonatally deafened cats for unmodulated pulse trains (e.g., 30 pulses/s or pps) and sinusoidal amplitude-modulated (SAM) pulse trains (e.g., 300 pps, SAM at 30 Hz; 300/30 AM). Animals were trained subsequently in a discrimination task to respond to changes in the modulation frequency of successive SAM signals (e.g., 300/8 AM vs. 300/30 AM). During acute physiological experiments, neural thresholds to pulse trains were estimated in the inferior colliculus (IC) and the primary auditory cortex (A1) of the anesthetized animals. Psychophysical detection thresholds for unmodulated and SAM pulse trains were virtually identical. Single IC neuron thresholds for SAM pulse trains showed a small but significant increase in threshold (0.4 dB or 15.5 microA) when compared with thresholds for unmodulated pulse trains. The mean difference between psychophysical and minimum neural thresholds within animals was not significant (mean = 0.3 dB). Importantly, cats also successfully discriminated changes in the modulation frequencies of the SAM signals. Performance on the discrimination task was not affected by carrier rate (100, 300, 500, 1,000, or 1,500 pps). These findings indicate that 1) behavioral and neural response thresholds are based on detection of the peak pulse amplitudes of the modulated and unmodulated signals, and 2) discrimination of successive SAM pulse trains is based on temporal resolution of the envelope frequencies. Overall, our animal model provides a robust framework for future studies of behavioral discrimination and central neural temporal processing of electrical signals applied to the deaf cochlea by a cochlear implant.
منابع مشابه
Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
Cochlear prostheses for electrical stimulation of the auditory nerve ("electrical hearing") can provide auditory capacity for profoundly deaf adults and children, including in many cases a restored ability to perceive speech without visual cues. A fundamental challenge in auditory neuroscience is to understand the neural and perceptual mechanisms that make rehabilitation of hearing possible in ...
متن کاملSpatial Selectivity to Intracochlear Electrical Stimulation in the Inferior Colliculus is Degraded Following Long-Term Deafness in Cats
In an animal model of electrical hearing in prelingually deaf adults this study examined the effects of deafness duration on response thresholds and spatial selectivity (i.e., cochleotopic organization, spatial tuning and dynamic range) in the central auditory system to intracochlear electrical stimulation. Electrically evoked auditory brainstem response (EABR) thresholds and neural response th...
متن کاملSpatial selectivity to intracochlear electrical stimulation in the inferior colliculus is degraded after long-term deafness in cats.
In an animal model of electrical hearing in prelingually deaf adults, this study examined the effects of deafness duration on response thresholds and spatial selectivity (i.e., cochleotopic organization, spatial tuning and dynamic range) in the central auditory system to intracochlear electrical stimulation. Electrically evoked auditory brain stem response (EABR) thresholds and neural response ...
متن کاملComparisons of psychophysical and neurophysiological studies of cochlear implants.
This paper compares psychophysical and neural studies of electrical stimulation of the auditory nerve with the goal of evaluating the relevance of single-unit animal models for the development of cochlear prostheses for profoundly deaf humans. Comparative psychophysical studies with implanted deaf subjects indicate that animal models, at least nonhuman primates, provide a close match to humans,...
متن کاملسایکوآکوستیک و درک گفتار در افراد مبتلا به نوروپاتی شنوایی و افراد طبیعی
Background: The main result of hearing impairment is reduction of speech perception. Patient with auditory neuropathy can hear but they can not understand. Their difficulties have been traced to timing related deficits, revealing the importance of the neural encoding of timing cues for understanding speech. Objective: In the present study psychoacoustic perception (minimal noticeable differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 5 شماره
صفحات -
تاریخ انتشار 2001