Texture Feature Extraction for Classification of Remote Sensing Data Using Wavelet Decomposition: a Comparative Study

نویسنده

  • L. A. Ruiz
چکیده

The extraction of texture features from high resolution remote sensing imagery provides a complementary source of data for those applications in which the spectral information is not sufficient for identification or classification of spectrally heterogeneous landscape units. However, there is a wide range of texture analysis techniques that are used with different criteria for feature extraction: statistical methods (grey level coocurrence matrix, semivariogram analysis); filter techniques (energy filters, Gabor filters); or the most recent techniques based on wavelet decomposition. The combination of parameters that optimize a method for a specific application should be decided when these techniques are used. These parameters include the neighbourhood size, the distance between pixels, the type of filter or mother wavelet used, the frequency or the standard deviation used to create the Gabor filters, etc. The combination of parameters and the texture method used is expected to be key in the success and efficiency of these techniques for a particular application. In this study, we analyze several texture methods applied to the classification of remote sensing images with different types of landscapes, as well as the optimal combination of parameters for each group of data. For this purpose, we created a database with high resolution satellite and aerial images from two types of environments, representing two of the main applications of texture analysis in remote sensing: Urban and forestry. The texture classes defined in urban applications involve heterogeneity and symmetry, while in forest applications is important to know the type and density of vegetation. The results show that the type of application determines the technique and the combination of parameters to be used for optimizing accuracy. The combination of texture methods and spectral information improves the results of classification. Finally, some specific methods to correct the border effect should be developped before these techniques can be applied in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

Texture Classification of Diffused Liver Diseases Using Wavelet Transforms

Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure.  The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There  are  some  approaches  to  develop  a  reliable  noninvasive  method  of  evaluating  histological  changes  in  sonograms. The main characteristic used to distinguish between the normal...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Using Wavelet Extraction for Haptic Texture Classification

While visual texture classification is a widely-researched topic in image analysis, little is known on its counterpart i.e. the haptic (touch) texture. This paper examines the visual texture classification in order to investigate how well it could be used for haptic texture search engine. In classifying the visual textures, feature extraction for a given image involving wavelet decomposition is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004