Topographic Effects on the Seismic Response of Steep Slopes
نویسندگان
چکیده
A frequency-domain parametric study using generalized consistent transmitting boundaries has been performed to evaluate the significance of topographic effects on the seismic response of steep slopes. The results show that the peak amplification of motion at the crest of a slope occurs at a normalized frequency 1t/2 = 0.2, where H is the slope height and 2 is the wavelength of the motion. The importance of the natural site frequency is illustrated by the analysis of a stepped layer over a half-space. It was found that the natural frequency of the region behind the crest can dominate the response, relative to the topographic effect, for the conditions studied. Moreover, the effect of topography can be handled separately from the amplification due to the natural frequency of the deposit behind the crest of the slope. This concept of separating the amplification caused by topography from that caused by the natural frequency is advantageous to the development of a simplified method to estimate topographic effects.
منابع مشابه
The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features
We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The relative spatial distribution of steep slopes can be reliably obtained, although some technical characteristics of the LOLA dataset preclude statistical studies of slope orien...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملImpact of DEM source and resolution on topographic seismic amplification
The impact of topographic attributes on the uneven distribution of seismic response and associated devastation has frequently been observed and documented during seismic events, but has rarely been investigated at a regional scale. Existing numerical and experimental techniques applied to explore the impact of topographic attributes in the aggravation of seismic response, have been limited to i...
متن کاملEffects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTM
We combine light detection and ranging (LiDAR) digital terrain model (DTM) data and an improved mesh implementation to investigate the effects of highresolution surface topography on seismic ground motion based upon the spectralelement method. In general, topography increases the amplitude of shaking at mountain tops and ridges, whereas valleys usually have reduced ground motion, as has been ob...
متن کاملISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes
Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...
متن کامل