Deep Poisson Factor Modeling

نویسندگان

  • Ricardo Henao
  • Zhe Gan
  • James Lu
  • Lawrence Carin
چکیده

We propose a new deep architecture for topic modeling, based on Poisson Factor Analysis (PFA) modules. The model is composed of a Poisson distribution to model observed vectors of counts, as well as a deep hierarchy of hidden binary units. Rather than using logistic functions to characterize the probability that a latent binary unit is on, we employ a Bernoulli-Poisson link, which allows PFA modules to be used repeatedly in the deep architecture. We also describe an approach to build discriminative topic models, by adapting PFA modules. We derive efficient inference via MCMC and stochastic variational methods, that scale with the number of non-zeros in the data and binary units, yielding significant efficiency, relative to models based on logistic links. Experiments on several corpora demonstrate the advantages of our model when compared to related deep models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Deep Poisson Factor Analysis for Topic Modeling

A new framework for topic modeling is developed, based on deep graphical models, where interactions between topics are inferred through deep latent binary hierarchies. The proposed multi-layer model employs a deep sigmoid belief network or restricted Boltzmann machine, the bottom binary layer of which selects topics for use in a Poisson factor analysis model. Under this setting, topics live on ...

متن کامل

Deep Dynamic Poisson Factorization Model

A new model, named as deep dynamic poisson factorization model, is proposed in this paper for analyzing sequential count vectors. The model based on the Poisson Factor Analysis method captures dependence among time steps by neural networks, representing the implicit distributions. Local complicated relationship is obtained from local implicit distribution, and deep latent structure is exploited...

متن کامل

Deep Convolutional Denoising of Low-Light Images

Poisson distribution is used for modeling noise in photon-limited imaging. While canonical examples include relatively exotic types of sensing like spectral imaging or astronomy, the problem is relevant to regular photography now more than ever due to the booming market for mobile cameras. Restricted form factor limits the amount of absorbed light, thus computational post-processing is called f...

متن کامل

Scalable Deep Poisson Factor Analysis for Topic Modeling: Supplementary Material

To prove Theorem 1 in the main text, we make use of Lemma 1 below, which is essentially the main theorem in (Ding et al., 2014), which again is a consequence of the celebrated Fokker-Planck Equation (Risken, 1989). Lemma 1. The stochastic process of θ generated by the stochastic differential equation (4) has the target distribution pθ(θ) = 1 Z exp{−U(θ)} as its stationary distribution, if p(Γ) ...

متن کامل

Factors Affecting Hospital Length of Stay Using Mixed Poisson Regression Models

Background and purpose: Modeling of Hospital Length of Stay (LOS) is of great importance in healthcare systems, but there is paucity of information on this issue in Iran. The aim of this study was to identify the optimal model among different mixed poisson distributions in modeling the LOS and effective factors. Materials and methods: In this cross-sectional study, we studied 1256 records, inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015