Temperature–amplitude coupling for stable biological rhythms at different temperatures
نویسندگان
چکیده
Most biological processes accelerate with temperature, for example cell division. In contrast, the circadian rhythm period is robust to temperature fluctuation, termed temperature compensation. Temperature compensation is peculiar because a system-level property (i.e., the circadian period) is stable under varying temperature while individual components of the system (i.e., biochemical reactions) are usually temperature-sensitive. To understand the mechanism for period stability, we measured the time series of circadian clock transcripts in cultured C6 glioma cells. The amplitudes of Cry1 and Dbp circadian expression increased significantly with temperature. In contrast, other clock transcripts demonstrated no significant change in amplitude. To understand these experimental results, we analyzed mathematical models with different network topologies. It was found that the geometric mean amplitude of gene expression must increase to maintain a stable period with increasing temperatures and reaction speeds for all models studied. To investigate the generality of this temperature-amplitude coupling mechanism for period stability, we revisited data on the yeast metabolic cycle (YMC) period, which is also stable under temperature variation. We confirmed that the YMC amplitude increased at higher temperatures, suggesting temperature-amplitude coupling as a common mechanism shared by circadian and 4 h-metabolic rhythms.
منابع مشابه
An air stable and efficient palladium catalyst for Suzuki-Miyaura cross coupling reaction at room temperature
The cross-coupling reaction between phenylboronic acid and various types of aryl halides (Suzuki reaction) was carried out using a catalytic amount of a new palladium catalyst (1-benzyl-3-(1-benzyl-1-methylpyrrolidin-1-ium-2-yl) pyridin-1-ium palladium chloride [DBNT][PdCl4]) in poly (ethylene glycol) (PEG-200) in the presence of KOH as the base. This new catalyst was synthesized and...
متن کاملAn air stable and efficient palladium catalyst for Suzuki-Miyaura cross coupling reaction at room temperature
The cross-coupling reaction between phenylboronic acid and various types of aryl halides (Suzuki reaction) was carried out using a catalytic amount of a new palladium catalyst (1-benzyl-3-(1-benzyl-1-methylpyrrolidin-1-ium-2-yl) pyridin-1-ium palladium chloride [DBNT][PdCl4]) in poly (ethylene glycol) (PEG-200) in the presence of KOH as the base. This new catalyst was synthesized and...
متن کاملTemperature Relationships of the Locomotor Rhythm of Carcinus
The so-called temperature independence of many biological rhythms is of functional importance in maintaining the correct phasing of physiological and behavioural activities despite changes in environmental temperatures. Nevertheless, the rhythms can often be partly modified by changes of temperature and it is necessary to consider the extent of this temperature-dependence when speculating about...
متن کاملResponse of GN Type II and Type III Theories on Reflection and Transmission Coefficients at the Boundary Surface of Micropolar Thermoelastic Media with Two Temperatures
In the present article, the reflection and transmission of plane waves at the boundary of thermally conducting micropolar elastic media with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected and transmitted waves at different angles of incident wave are obtained. ...
متن کاملThe molecular basis of temperature compensation in the Arabidopsis circadian clock.
Circadian clocks maintain robust and accurate timing over a broad range of physiological temperatures, a characteristic termed temperature compensation. In Arabidopsis thaliana, ambient temperature affects the rhythmic accumulation of transcripts encoding the clock components TIMING OF CAB EXPRESSION1 (TOC1), GIGANTEA (GI), and the partially redundant genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) an...
متن کامل