DNA methylation is critical for Arabidopsis embryogenesis and seed viability.

نویسندگان

  • Wenyan Xiao
  • Kendra D Custard
  • Roy C Brown
  • Betty E Lemmon
  • John J Harada
  • Robert B Goldberg
  • Robert L Fischer
چکیده

DNA methylation (5-methylcytosine) in mammalian genomes predominantly occurs at CpG dinucleotides, is maintained by DNA methyltransferase1 (Dnmt1), and is essential for embryo viability. The plant genome also has 5-methylcytosine at CpG dinucleotides, which is maintained by METHYLTRANSFERASE1 (MET1), a homolog of Dnmt1. In addition, plants have DNA methylation at CpNpG and CpNpN sites, maintained, in part, by the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase. Here, we show that Arabidopsis thaliana embryos with loss-of-function mutations in MET1 and CMT3 develop improperly, display altered planes and numbers of cell division, and have reduced viability. Genes that specify embryo cell identity are misexpressed, and auxin hormone gradients are not properly formed in abnormal met1 embryos. Thus, DNA methylation is critical for the regulation of plant embryogenesis and for seed viability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and Epigenetic Regulation of Embryogenesis

Embryogenesis is a crucial period in the development of eukaryotes. In most plants, embryogenesis begins with an asymmetric cell division that gives rise to a polar embryo having a larger basal cell and a smaller apical cell. The embryoproper develops from the apical cell, and the basal cell develops into the suspensor, which is attached to the ovule and serves as a conduit for nutrient transfe...

متن کامل

LONO1 Encoding a Nucleoporin Is Required for Embryogenesis and Seed Viability in Arabidopsis1[C][W][OA]

Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in ear...

متن کامل

LONO1 encoding a nucleoporin is required for embryogenesis and seed viability in Arabidopsis.

Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in ear...

متن کامل

Regulation of seed size by hypomethylation of maternal and paternal genomes.

DNA methylation is an epigenetic modification of cytosine that is important for silencing gene transcription and transposons, gene imprinting, development, and seed viability. DNA METHYLTRANSFERASE1 (MET1) is the primary maintenance DNA methyltransferase in Arabidopsis (Arabidopsis thaliana). Reciprocal crosses between antisense MET1 transgenic and wild-type plants show that DNA hypomethylation...

متن کامل

The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species.

The success or failure of interspecific crosses is vital to evolution and to agriculture, but much remains to be learned about the nature of hybridization barriers. Several mechanisms have been proposed to explain postzygotic barriers, including negative interactions between diverged sequences, global genome rearrangements, and widespread epigenetic reprogramming. Another explanation is imbalan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2006