Initialization by a Novel Clustering for Wavelet Neural Network as Time Series Predictor

نویسندگان

  • Rong Cheng
  • Hongping Hu
  • Xiuhui Tan
  • Yanping Bai
چکیده

The architecture and parameter initialization of wavelet neural network are discussed and a novel initialization method is proposed. The new approach can be regarded as a dynamic clustering procedure which will derive the neuron number as well as the initial value of translation and dilation parameters according to the input patterns and the activating wavelets functions. Three simulation examples are given to examine the performance of our method as well as Zhang's heuristic initialization approach. The results show that the new approach not only can decide the WNN structure automatically, but also provides superior initial parameter values that make the optimization process more stable and quickly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural-Smith Predictor Method for Improvement of Networked Control Systems

Networked control systems (NCSs) are distributed control systems in which the nodes, including controllers, sensors, actuators, and plants are connected by a digital communication network such as the Internet. One of the most critical challenges in networked control systems is the stochastic time delay of arriving data packets in the communication network among the nodes. Using the Smith predic...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

Wavelet Packet Multi-layer Perceptron for Chaotic Time Series Prediction: Effects of Weight Initialization

We train the wavelet packet multi-layer perceptron neural network (WP-MLP) by backpropagation for time series prediction. Weights in the backpropagation algorithm are usually initialized with small random values. If the random initial weights happen to be far from a good solution or they are near a poor local optimum, training may take a long time or get trap in the local optimum. Proper weight...

متن کامل

پیش بینی پارامترهای کیفی (NO3 ,DO) رودخانه کرج با استفاده از مدل های ANN، MLR و تلفیق شبکه عصبی-موجکی بر پایه نویززدایی

Background & Objectives: The prediction and quality control of the Karaj River water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, performance of artificial neural network (ANN), combined wavelet-neural network (WANN), and multi linear regression (MLR) models were evaluated to predict next month nitrate and dissolved oxygen of “Pole K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015