Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases.
نویسندگان
چکیده
Several methods have been proposed for linkage analysis of complex traits with unknown mode of inheritance. These methods include the LOD score maximized over disease models (MMLS) and the "nonparametric" linkage (NPL) statistic. In previous work, we evaluated the increase of type I error when maximizing over two or more genetic models, and we compared the power of MMLS to detect linkage, in a number of complex modes of inheritance, with analysis assuming the true model. In the present study, we compare MMLS and NPL directly. We simulated 100 data sets with 20 families each, using 26 generating models: (1) 4 intermediate models (penetrance of heterozygote between that of the two homozygotes); (2) 6 two-locus additive models; and (3) 16 two-locus heterogeneity models (admixture alpha = 1.0,.7,.5, and.3; alpha = 1.0 replicates simple Mendelian models). For LOD scores, we assumed dominant and recessive inheritance with 50% penetrance. We took the higher of the two maximum LOD scores and subtracted 0.3 to correct for multiple tests (MMLS-C). We compared expected maximum LOD scores and power, using MMLS-C and NPL as well as the true model. Since NPL uses only the affected family members, we also performed an affecteds-only analysis using MMLS-C. The MMLS-C was both uniformly more powerful than NPL for most cases we examined, except when linkage information was low, and close to the results for the true model under locus heterogeneity. We still found better power for the MMLS-C compared with NPL in affecteds-only analysis. The results show that use of two simple modes of inheritance at a fixed penetrance can have more power than NPL when the trait mode of inheritance is complex and when there is heterogeneity in the data set.
منابع مشابه
Further evidence for the increased power of LOD scores compared with nonparametric methods.
In genetic analysis of diseases in which the underlying model is unknown, "model free" methods-such as affected sib pair (ASP) tests-are often preferred over LOD-score methods, although LOD-score methods under the correct or even approximately correct model are more powerful than ASP tests. However, there might be circumstances in which nonparametric methods will outperform LOD-score methods. R...
متن کاملThe power to detect linkage in complex disease by means of simple LOD-score analyses.
Maximum-likelihood analysis (via LOD score) provides the most powerful method for finding linkage when the mode of inheritance (MOI) is known. However, because one must assume an MOI, the application of LOD-score analysis to complex disease has been questioned. Although it is known that one can legitimately maximize the maximum LOD score with respect to genetic parameters, this approach raises ...
متن کاملGenome-wide and interaction linkage scan for nonsyndromic cleft lip with or without cleft palate in two multiplex families in Shenyang, China.
OBJECTIVES To identify the loci involved in nonsyndromic cleft lip with or without cleft palate (NSCL/P) in Northern Chinese people in Shenyang by using genomewide and interaction linkage scan. METHODS Two multiplex families in Shenyang from North China were ascertained through probands with NSCL/P. Blood of every member was drawn for DNA extraction and analysis. Genotypes were available for ...
متن کاملParametric and nonparametric linkage analysis: a unified multipoint approach.
In complex disease studies, it is crucial to perform multipoint linkage analysis with many markers and to use robust nonparametric methods that take account of all pedigree information. Currently available methods fall short in both regards. In this paper, we describe how to extract complete multipoint inheritance information from general pedigrees of moderate size. This information is captured...
متن کاملOrdered subsets linkage analysis of antisocial behavior in substance use disorder among participants in the Collaborative Study on the Genetics of Alcoholism.
Heterogeneity in complex diseases such as Substance Use Disorder (SUD) reduces the power to detect linkage and makes replication of findings in other populations unlikely. It is therefore critical to refine the phenotype and use methods that account for genetic heterogeneity between families. SUD was operationalized as diagnosis of abuse or dependence to alcohol and/or any one of five illicit s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of human genetics
دوره 65 3 شماره
صفحات -
تاریخ انتشار 1999