Bayesian Forecasting & Scalable Multivariate Volatility Analysis Using Simultaneous Graphical Dynamic Models

نویسندگان

  • Lutz F. Gruber
  • Mike West
چکیده

The recently introduced class of simultaneous graphical dynamic linear models (SGDLMs) defines an ability to scale on-line Bayesian analysis and forecasting to higher-dimensional time series. This paper advances the methodology of SGDLMs, developing and embedding a novel, adaptive method of simultaneous predictor selection in forward filtering for on-line learning and forecasting. The advances include developments in Bayesian computation for scalability, and a case study in exploring the resulting potential for improved short-term forecasting of large-scale volatility matrices. A case study concerns financial forecasting and portfolio optimization with a 400-dimensional series of daily stock prices. Analysis shows that the SGDLM forecasts volatilities and co-volatilities well, making it ideally suited to contributing to quantitative investment strategies to improve portfolio returns. We also identify performance metrics linked to the sequential Bayesian filtering analysis that turn out to define a leading indicator of increased financial market stresses, comparable to but leading the standard St. Louis Fed Financial Stress Index (STLFSI) measure. Parallel computation using GPU implementations substantially advance the ability to fit and use these models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

Multivariate Stochastic Volatility with Bayesian Dynamic Linear Models

This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount...

متن کامل

Bayesian Dynamic Factor

We discuss the development of dynamic factor models for multivariate nancial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct gen-eralisations of ...

متن کامل

Bayesian Dynamic Factor Models and Portfolio Allocation

We discuss the development of dynamic factor models for multivariate financial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalizations of...

متن کامل

Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models

We extend recently introduced latent threshold dynamic models to include dependencies among dynamic latent factors underlying multivariate volatility. With an ability to induce time-varying sparsity into factor loadings, these models now also allow time-varying correlations among factors; this may be exploited to improve volatility forecasts. We couple multi-period, out-of-sample forecasting wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016