into one - norm solvers from the Pareto curve
نویسندگان
چکیده
Geophysical inverse problems typically involve a tradeoff between data misfit and some prior model. Pareto curves trace the optimal trade-off between these two competing aims. These curves are used commonly in problems with two-norm priors in which they are plotted on a log-log scale and are known as L-curves. For other priors, such as the sparsity-promoting one-norm prior, Pareto curves remain relatively unexplored. We show how these curves lead to new insights into one-norm regularization. First, we confirm theoretical properties of smoothness and convexity of these curves from a stylized and a geophysical example. Second, we exploit these crucial properties to approximate the Pareto curve for a large-scale problem. Third, we show how Pareto curves provide an objective criterion to gauge how different one-norm solvers advance toward the solution.
منابع مشابه
New insights into one-norm solvers from the Pareto curve
Geophysical inverse problems typically involve a trade off between data misfit and some prior. Pareto curves trace the optimal trade off between these two competing aims. These curves are commonly used in problems with two-norm priors where they are plotted on a log-log scale and are known as L-curves. For other priors, such as the sparsity-promoting one norm, Pareto curves remain relatively un...
متن کاملSeismic Laboratory for Imaging and Modeling
Geophysical inverse problems typically involve a trade off between data misfit and some prior. Pareto curves trace the optimal trade off between these two competing aims. These curves are commonly used in problems with two-norm priors where they are plotted on a log-log scale and are known as L-curves. For other priors, such as the sparsity-promoting one norm, Pareto curves remain relatively un...
متن کاملApproximating Pareto curves using semidefinite relaxations
We consider the problem of constructing an approximation of the Pareto curve associated with the multiobjective optimization problem minx∈S{(f1(x), f2(x))}, where f1 and f2 are two conflicting polynomial criteria and S ⊂ Rn is a compact basic semialgebraic set. We provide a systematic numerical scheme to approximate the Pareto curve. We start by reducing the initial problem into a scalarized po...
متن کاملProbing the Pareto Frontier for Basis Pursuit Solutions
The basis pursuit problem seeks a minimum one-norm solution of an underdetermined least-squares problem. Basis pursuit denoise (BPDN) fits the least-squares problem only approximately, and a single parameter determines a curve that traces the optimal trade-off between the least-squares fit and the one-norm of the solution. We prove that this curve is convex and continuously differentiable over ...
متن کاملDegree of Optimality as a Measure of Distance of Power System Operation from Optimal Operation
This paper presents an algorithm based on inter-solutions of having scheduled electricity generation resources and the fuzzy logic as a sublimation tool of outcomes obtained from the schedule inter-solutions. The goal of the algorithm is to bridge the conflicts between minimal cost and other aspects of generation. In the past, the optimal scheduling of electricity generation resources has been ...
متن کامل