Growth mechanism of catalyst- and template-free group III-nitride nanorods

نویسندگان

  • Yong Sun Won
  • Young Seok Kim
  • Olga Kryliouk
  • Timothy J. Anderson
چکیده

A feasible mechanism for catalystand template-free group III-nitride nanorod growth by hydride vapor phase epitaxy (HVPE) is proposed. The mechanism is composed of random nanoparticle nucleation from growth conditions—growth temperature and Cl/group III ratio—based on the proposed mechanism, and the computed values showed good agreement with reported experimental results. The involvement of a group III trichloride as a key species in the proposed mechanism required the Cl/group III ratio to be 3 according to stoichiometry. A higher Cl/group III ratio led to etching of the solid phase and a lower ratio favored two-dimensional film growth instead. The zone of GaN and InN nanorod growth by HVPE was shown to lie in the vicinity of the growth–etch transition. A two-temperature approach, employed in GaN nanorod growth, was supported by the deconvolution of two conflicting kinetic and thermodynamic constraints in terms of growth temperature: a high-temperature region for GaCl3 formation that is kinetically limited at low temperature and a low-temperature region for GaN nanorod growth without GaN etching that is thermodynamically favorable in a chlorinated environment at high temperature. The temperature for AlN nanorod growth by chemical vapor deposition using AlCl3 and NH3 was limited only by the thermodynamic constraint of ammonia adduct (Cl3Al:NH3) formation. & 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wafer-scale Thermodynamically Stable GaN Nanorods via Two-Step Self-Limiting Epitaxy for Optoelectronic Applications

We present a method of epitaxially growing thermodynamically stable gallium nitride (GaN) nanorods via metal-organic chemical vapor deposition (MOCVD) by invoking a two-step self-limited growth (TSSLG) mechanism. This allows for growth of nanorods with excellent geometrical uniformity with no visible extended defects over a 100 mm sapphire (Al2O3) wafer. An ex-situ study of the growth morpholog...

متن کامل

Organic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE

A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...

متن کامل

Organic template-free synthesis of Ni-ZSM-5 nanozeolite: a novel catalyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE

A novel modified Ni-ZSM-5 nanozeolite was fabricated via an organic template-free hydrothermal route. The average particle size of Ni-ZSM-5 nanozeolite was calculated to be 85 nm by scanning electronic microscopy. Then, Carbon paste electrode (CPE) was modified by Ni-ZSM-5 nanozeolite and Ni2+ ions were then incorporated to the nanozeolite matrix. Electrochemical behavior of this electrode was ...

متن کامل

Green Synthesis and Characterization of Bi2O3 Nanorods as Catalyst for Aromatization of 1,4-Dihydropyridines

Bismuth oxide (Bi2O3) nanorods was prepared via one pot sol-gel method using Bi(NO3)3.5H2O and starch (as template) in water under hydrothermal condition followed by calcination at 320˚C within 3 h. The resultant solid product was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TGA), and FTIR techniques. Based on the obtained results, the formatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008