Post Processing of Optically Recognized Text using First Order Hidden Markov Model
نویسندگان
چکیده
منابع مشابه
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملUsing Hidden Markov Models in segmentation of speaker-independent connected-digits corpus
The first task to be accomplished in speech recognition is the segmentation and labeling of records. Regarding speech, this is a very complicated and costly procedure, although of most importance because at the present time many available speech corpora are not segmented. This paper proposes a semi-automatic segmentation method in order to reduce the manual segmentation burden of a very large c...
متن کاملSegmentation-free optical character recognition for printed Urdu text
This paper presents a segmentation-free optical character recognition system for printed Urdu Nastaliq font using ligatures as units of recognition. The proposed technique relies on statistical features and employs Hidden Markov Models for classification. A total of 1525 unique high-frequency Urdu ligatures from the standard Urdu Printed Text Images (UPTI) database are considered in our study. ...
متن کامل