Evolutionary Semigroups and Dichotomy of Linear Skew-product Flows on Locally Compact Spaces with Banach Fibers
نویسندگان
چکیده
We study evolutionary semigroups generated by a strongly continuous semi-cocycle over a locally compact metric space acting on Banach fibers. This setting simultaneously covers evolutionary semigroups arising from nonautonomuous abstract Cauchy problems and C0-semigroups, and linear skew-product flows. The spectral mapping theorem for these semigroups is proved. The hyperbolicity of the semigroup is related to the exponential dichotomy of the corresponding linear skew-product flow. To this end a Banach algebra of weighted composition operators is studied. The results are applied in the study of: “roughness” of the dichotomy, dichotomy and solutions of nonhomogeneous equations, Green’s function for a linear skew-product flow, “pointwise” dichotomy versus “global” dichotomy, and evolutionary semigroups along trajectories of the flow.
منابع مشابه
Perron Conditions and Uniform Exponential Stability of Linear Skew-product Semiflows on Locally Compact Spaces
The aim of this paper is to give necessary and sufficient conditions for uniform exponential stability of linear skew-product semiflows on locally compact metric spaces with Banach fibers. Thus, there are obtained generalizations of some theorems due to Datko, Neerven, Clark, Latushkin, Montgomery-Smith, Randolph, van Minh, Räbiger and Schnaubelt.
متن کاملAbstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...
متن کاملExponential Stability and Exponential Instability for Linear Skew-product Flows
We give characterizations for uniform exponential stability and uniform exponential instability of linear skew-product flows in terms of Banach sequence spaces and Banach function spaces, respectively. We present a unified approach for uniform exponential stability and uniform exponential instability of linear skew-product flows, extending some stability theorems due to Neerven, Datko, Zabczyk ...
متن کاملTranslation Invariant Spaces and Asymptotic Properties of Variational Equations
and Applied Analysis 3 We consider the general setting of variational equations described by skew-product flows, and we associate a control system on the real line. Beside obtaining new conditions for the existence of uniform or exponential dichotomy of skew-product flows, the main aim is to clarify the chart of the connections between the classes of translation invariant function spaces that p...
متن کاملSome relations between $L^p$-spaces on locally compact group $G$ and double coset $Ksetminus G/H$
Let $H$ and $K$ be compact subgroups of locally compact group $G$. By considering the double coset space $Ksetminus G/H$, which equipped with an $N$-strongly quasi invariant measure $mu$, for $1leq pleq +infty$, we make a norm decreasing linear map from $L^p(G)$ onto $L^p(Ksetminus G/H,mu)$ and demonstrate that it may be identified with a quotient space of $L^p(G)$. In addition, we illustrate t...
متن کامل