Application of Multiscale Cohesive Zone Model to Simulate Fracture in Polycrystalline Solids
نویسندگان
چکیده
In this work, we apply the multiscale cohesive method (Zeng and Li [2010]) to simulate fracture and crack propagations in polycrystalline solids. The multiscale cohesive method uses fundamental principles of colloidal physics and micro-mechanics homogenization techniques to link the atomistic binding potential with the mesoscale material properties of the cohesive zone, and hence the method can provide an effective means to describe heterogeneous material properties at small scale by taking into account the effect of inhomogeneities such as grain boundaries, bi-material interfaces, slip lines, and inclusions, etc. In particular, the depletion potential of the cohesive interface is made consistent with the atomistic potential inside the bulk material, and it provides microstructure-based interface potentials in both normal and tangential directions with respect to finite element boundary separations. Voronoi tessellations have been utilized to generate different randomly shaped microstructure in studying the effect of polycrystalline grain morphology. Numerical simulations on crack propagation for various cohesive strengths are presented, and it demonstrates the ability to capture the transition from the inter-granular fracture to the trans-granular fracture. A convergence test is conducted to study the possible size-effect of the method. Finally, a high speed impact example is reported. The example demonstrates the advantages of multiscale cohesive method in simulating the spall fracture under high-speed impact loads.
منابع مشابه
A multiscale cohesive zone model and simulations of fractures
In this work, a novel multiscale cohesive zone model is proposed, in which the bulk material is modeled as a local quasi-continuum medium that obeys the Cauchy–Born rule while the cohesive force and displacement relations inside the cohesive zone are governed by a coarse grained depletion potential. The interface depletion potential is constructed based on the Derjaguin approximation of nonloca...
متن کاملSimulation of the Mode I fracture of concrete beam with cohesive models
Crack propagation modeling in quasi-brittle materials such as concrete is essential for improving the reliability and load-bearing capacity assessment. Crack propagation explains many failure characteristics of concrete structures using the fracture mechanics approach. This approach could better explain the softening behavior of concrete structures. A great effort has been made in developing nu...
متن کاملA Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel
Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...
متن کاملApplication of M3GM in a Petroleum Reservoir Simulation
Reservoir formations exhibit a wide range of heterogeneity from micro to macro scales. A simulation that involves all of these data is highly time consuming or almost impossible; hence, a new method is needed to meet the computational cost. Moreover, the deformations of the reservoir are important not only to protect the uppermost equipment but also to simulate fluid pattern and petroleum produ...
متن کاملA Model for Predicting the Multiscale Crack Growth Due to an Impact in Heterogeneous Viscoelastic Solids
A two-scale model for predicting the multiple crack growth in viscoelastic solids due to an impact is presented. The cracks are considered only at the local scale through the use of a micromechanical viscoelastic cohesive zone model. The multiscale model has been implemented in a finite-element code. In order to minimize the computation time, the local finite-element meshes are solved in parall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010