Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes.

نویسندگان

  • Patrick Most
  • Melanie Boerries
  • Carmen Eicher
  • Christopher Schweda
  • Mirko Völkers
  • Thilo Wedel
  • Stefan Söllner
  • Hugo A Katus
  • Andrew Remppis
  • Ueli Aebi
  • Walter J Koch
  • Cora-Ann Schoenenberger
چکیده

Calcium is a key regulator of cardiac function and is modulated through the Ca2+-sensor protein S100A1. S100 proteins are considered to exert both intracellular and extracellular functions on their target cells. Here we report the impact of an increased intracellular S100A1 protein level on Ca2+-homeostasis in neonatal ventricular cardiomyocytes in vitro. Specifically, we compare the effects of exogenously added recombinant S100A1 to those resulting from the overexpression of a transduced S100A1 gene. Extracellularly added S100A1 enhanced the Ca2+-transient amplitude in neonatal ventricular cardiomyocytes (NVCMs) through a marked decrease in intracellular diastolic Ca2+-concentrations ([Ca2+]i). The decrease in [Ca2+]i was independent of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity and was probably the result of an increased sarcolemmal Ca2+-extrusion through the sodium-calcium exchanger (NCX). At the same time the Ca2+-content of the sarcoplasmic reticulum (SR) decreased. These effects were dependent on the uptake of extracellularly added S100A1 protein and its subsequent routing to the endosomal compartment. Phospholipase C and protein kinase C, which are tightly associated with this subcellular compartment, were found to be activated by endocytosed S100A1. By contrast, adenoviral-mediated intracellular S100A1 overexpression enhanced the Ca2+-transient amplitude in NVCMs mainly through an increase in systolic [Ca2+]i. The increased Ca2+-load in the SR was based on an enhanced SERCA2a activity while NCX function was unaltered. Overexpressed S100A1 colocalized with SERCA2a and other Ca2+-regulatory proteins at the SR, whereas recombinant S100A1 protein that had been endocytosed did not colocalize with SR proteins. This study provides the first evidence that intracellular S100A1, depending on its subcellular location, modulates cardiac Ca2+-turnover via different Ca2+-regulatory proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac adenoviral S100A1 gene delivery rescues failing myocardium.

Cardiac-restricted overexpression of the Ca2+-binding protein S100A1 has been shown to lead to increased myocardial contractile performance in vitro and in vivo. Since decreased cardiac expression of S100A1 is a characteristic of heart failure, we tested the hypothesis that S100A1 gene transfer could restore contractile function of failing myocardium. Adenoviral S100A1 gene delivery normalized ...

متن کامل

S100A1 transgenic treatment of acute heart failure causes proteomic changes in rats

S100 Ca2+-binding protein A1 (S100A1) is an important regulator of myocardial contractility. The aim of the present study was to identify the underlying mechanisms of S100A1 activity via profiling the protein expression in rats administered with an S100A1 adenovirus (Ad‑S100A1‑EGFP) following acute myocardial infarction (AMI). LTQ OrbiTrap mass spectrometry was used to profile the protein expre...

متن کامل

S100A1: A Regulator of Striated Muscle Sarcoplasmic Reticulum Ca2+ Handling, Sarcomeric, and Mitochondrial Function

Calcium (Ca(2+)) signaling plays a key role in a wide range of physiological functions including control of cardiac and skeletal muscle performance. To assure a precise coordination of both temporally and spatially transduction of intracellular Ca(2+) oscillations to downstream signaling networks and target operations, Ca(2+) cycling regulation in muscle tissue is conducted by a plethora of div...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 118 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005