Towards a unified account of supervised and unsupervised category learning

نویسندگان

  • Todd M. Gureckis
  • Bradley C. Love
چکیده

(Supervised and Unsupervised STratified Adaptive IncrementalNetwork) is a network model of human category learning. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g. it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes/attractors/rules. SUSTAIN has expanded the scope of findings that models of human category learning can address. This paper extends SUSTAIN so that it can be used to account for both supervised and unsupervised learning data through a common mechanism. A modified recruitment rule is introduced that creates new conceptual clusters in response to surprising events during learning. The new formulation of the model is called uSUSTAIN for ‘unified SUSTAIN.’ The implications of using a unified recruitment method for both supervised and unsupervised learning are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Unsupervised and Supervised Learning as a Quantitative Distinction

SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a network model of human category learning. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g. it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising eve...

متن کامل

Modeling Unsupervised Learning with SUSTAIN

SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a network model of human category learning. This paper extends SUSTAIN so that it can be used to model unsupervised learning data. A modified recruitment mechanism is introduced that creates new conceptual clusters in response to surprising events during learning. Two seemingly contradictory unsupervised learning d...

متن کامل

Supervised versus unsupervised categorization: two sides of the same coin?

Supervised and unsupervised categorization have been studied in separate research traditions. A handful of studies have attempted to explore a possible convergence between the two. The present research builds on these studies, by comparing the unsupervised categorization results of Pothos et al. ( 2011 ; Pothos et al., 2008 ) with the results from two procedures of supervised categorization. In...

متن کامل

Statistical machine learning for data mining and collaborative multimedia retrieval

of thesis entitled: Statistical Machine Learning for Data Mining and Collaborative Multimedia Retrieval Submitted by HOI, Chu Hong (Steven) for the degree of Doctor of Philosophy at The Chinese University of Hong Kong in September 2006 Statistical machine learning techniques have been widely applied in data mining and multimedia information retrieval. While traditional methods, such as supervis...

متن کامل

The multifaceted nature of unsupervised category learning.

A substantial portion of category-learning research has focused on one learning mode--namely, classification learning (a supervised learning mode). Subsequently, theories of category learning have focused on how the abstract structure of categories (i.e., the co-occurrence patterns of feature values) affects acquisition. Recent work in supervised learning has shown that a learner's interactions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Exp. Theor. Artif. Intell.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2003