A coupled chemotaxis-fluid model: Global existence
نویسندگان
چکیده
We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis–Navier–Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis–Stokes system with nonlinear diffusion for the cell density. © 2011 Elsevier Masson SAS. All rights reserved. Résumé Nous considérons un modèle provenant de la biologie, composé d’équations de chimiotactisme couplées aux équations de fluide visqueux incompressible par le transport et le forçage externe. L’existence globale des solutions du problème de Cauchy est étudiée sous certaines conditions. Précisément, pour le système chimiotactisme–Navier–Stokes en deux dimensions d’espace, nous obtenons l’existence globale pour des données grandes. En trois dimensions d’espace, nous démontrons l’existence globale des solutions faibles pour le système chimiotactisme–Stokes avec une diffusion non-linéaire de la densité des cellules. © 2011 Elsevier Masson SAS. All rights reserved.
منابع مشابه
A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion
In this article, the mathematical analysis of a model arising from biology consisting of diffusion, chemotaxis with volume filling effect and transport through an incompressible fluid, is studied. Motivated by numerical and modeling issues, the global-in-time existence of weak solutions to this model is investigated. The novelty with respect to other related papers lies in the presence of two-s...
متن کاملA priori bounds and global existence for a strongly coupled quasilinear parabolic system modeling chemotaxis
A priori bounds are found for solutions to a strongly coupled reactiondiffusion system that models competition of species in the presence of chemotaxis. These bounds are used to prove the existence of global solutions.
متن کاملA Class of Kinetic Models for Chemotaxis with Threshold to Prevent Overcrowding
We introduce three new examples of kinetic models for chemotaxis, where a kinetic equation for the phase-space density is coupled to a parabolic or elliptic equation for the chemo-attractant, in two or three dimensions. We prove that these models have global-in-time existence and rigorously converge, in the drift-diffusion limit to the Keller–Segel model. Furthermore, the cell density is unifor...
متن کاملOn blow-up criteria for a coupled chemotaxis fluid model
We consider a coupled chemotaxis fluid model and prove some blow-up criteria of the local strong solution.
متن کاملGlobal weak solutions and asymptotic limits of a Cahn--Hilliard--Darcy system modelling tumour growth
We study the existence of weak solutions to a Cahn–Hilliard–Darcy system coupled with a convection-reaction-diffusion equation through the fluxes, through the source terms and in Darcy’s law. The system of equations arises from a mixture model for tumour growth accounting for transport mechanisms such as chemotaxis and active transport. We prove, via a Galerkin approximation, the existence of g...
متن کامل