Raman scattering in current-carrying molecular junctions.
نویسندگان
چکیده
We present a theory for Raman scattering by current-carrying molecular junctions. The approach combines a nonequilibrium Green's function (NEGF) description of the nonequilibrium junction with a generalized scattering theory formulation for evaluating the light scattering signal. This generalizes our previous study [M. Galperin and A. Nitzan, Phys. Rev. Lett. 95, 206802 (2005); J. Chem. Phys. 124, 234709 (2006)] of junction spectroscopy by including molecular vibrations and developing machinery for calculation of state-to-state (Raman scattering) fluxes within the NEGF formalism. For large enough voltage bias, we find that the light scattering signal contains, in addition to the normal signal associated with the molecular ground electronic state, also a contribution from the inverse process originated from the excited molecular state as well as an interference component. The effects of coupling to the electrodes and of the imposed bias on the total Raman scattering as well as its components are discussed. Our result reduces to the standard expression for Raman scattering in the isolated molecule case, i.e., in the absence of coupling to the electrodes. The theory is used to discuss the charge-transfer contribution to surface enhanced Raman scattering for molecules adsorbed on metal surfaces and its manifestation in the biased junction.
منابع مشابه
Surface-Enhanced Raman Scattering in Molecular Junctions
Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport meas...
متن کاملRaman scattering from nonequilibrium molecular conduction junctions.
Raman scattering is a potentially important probe of structure, dynamics, and thermal properties of single-molecule conduction junctions. We combine a nonequilibrium Green's function description of the junction with a generalized scattering theory of the Raman process, which provides the first theoretical description of Raman scattering from such systems. The voltage dependence of the Raman flu...
متن کاملDetection of Molecular Vibrations of Ciprofloxacin Using Flexible Plasmonic Active Substrates as Surface-Enhanced Raman Scattering (SERS) Biosensors
This article has no abstract.
متن کاملEffect of interface adhesion and impurity mass on phonon transport at atomic junctions
Related Articles Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures J. Appl. Phys. 113, 013702 (2013) Raman spectrum method for characterization of pull-in voltages of graphene capacitive shunt switches Appl. Phys. Lett. 101, 263103 (2012) Admittance of Au/1,4-benzenedithiol/Au single-molecule junctions Appl. Phys. Lett. 101, 253510 (2012) Designing the r...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 130 14 شماره
صفحات -
تاریخ انتشار 2009