Freeness Conditions for 2-Crossed Modules of Commutative Algebras
نویسندگان
چکیده
In this paper we give a construction of free 2-crossed modules. By the use of a `step-by-step' method based on the work of Andr e, we will give a description of crossed algebraic models for the steps in the construction of a free simplicial resolution of an algebra. This involves the introduction of the notion of a free 2-crossed module of algebras.
منابع مشابه
Crossed Squares and 2-crossed Modules of Commutative Algebras
In this paper, we construct a neat description of the passage from crossed squares of commutative algebras to 2-crossed modules analogous to that given by Conduché in the group case. We also give an analogue, for commutative algebra, of T.Porter’s [13] simplicial groups to n-cubes of groups which implies an inverse functor to Conduché’s one.
متن کاملLimits in modified categories of interest
We firstly prove the completeness of the category of crossed modules in a modified category of interest. Afterwards, we define pullback crossed modules and pullback cat objects that are both obtained by pullback diagrams with extra structures on certain arrows. These constructions unify many corresponding results for the cases of groups, commutative algebras and can also be adapted to ...
متن کاملFreeness Conditions for 2 - Crossed Modules
Using free simplicial groups, it is shown how to construct a free or totally free 2-crossed module on suitable construction data. 2-crossed complexes are introduced and similar freeness results for these are discussed.
متن کاملFreeness Conditions for 2-crossed Modules and Complexes
Using free simplicial groups, it is shown how to construct a free or totally free 2-crossed module on suitable construction data. 2-crossed complexes are introduced and similar freeness results for these are discussed.
متن کاملMultiplication operators on Banach modules over spectrally separable algebras
Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module. We study the set ${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$. In the case $mathscr{X}=mathcal{A}$, ${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$. We s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 6 شماره
صفحات -
تاریخ انتشار 1998