Adaptive Parameter Selection for Block Wavelet-Thresholding Deconvolution
نویسندگان
چکیده
In this paper, we propose a data-driven block thresholding procedure for waveletbased non-blind deconvolution. The approach consists in appropriately writing the problem in the wavelet domain and then selecting both the block size and threshold parameter at each resolution level by minimizing Stein’s unbiased risk estimate. The resulting algorithm is simple to implement and fast. Numerical illustrations are provided to assess the performance of the estimator.
منابع مشابه
Stein block thresholding for wavelet-based image deconvolution
Abstract: In this paper, we propose a fast image deconvolution algorithm that combines adaptive block thresholding and Vaguelet-Wavelet Decomposition. The approach consists in first denoising the observed image using a wavelet-domain Stein block thresholding, and then inverting the convolution operator in the Fourier domain. Our main theoretical result investigates the minimax rates over Besov ...
متن کاملSmooth James-Stein model selection against erratic Stein unbiased risk estimate to select several regularization parameters
Smooth James-Stein thresholding-based estimators enjoy smoothness like ridge regression and perform variable selection like lasso. They have added flexibility thanks to more than one regularization parameters (like adaptive lasso), and the ability to select these parameters well thanks to a unbiased and smooth estimation of the risk. The motivation is a gravitational wave burst detection proble...
متن کاملFunctional Wavelet Deconvolution in a Periodic Setting
We extend deconvolution in a periodic setting to deal with functional data. The resulting functional deconvolution model can be viewed as a generalization of a multitude of inverse problems in mathematical physics where one needs to recover initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation. In the case when it is observed at a f...
متن کاملFunctional Deconvolution in a Periodic Setting
We extend deconvolution in a periodic setting to deal with functional data. The resulting functional deconvolution model can be viewed as a generalization of a multitude of inverse problems in mathematical physics where one needs to recover initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation. In the case when it is observed at a f...
متن کاملOn adaptive wavelet estimation of a quadratic functional from a deconvolution problem
We observe a stochastic process where a convolution product of an unknown function and a known function is corrupted by Gaussian noise. We wish to estimate the squared L-norm of the unknown function from the observations. To reach this goal, we develop adaptive estimators based on wavelet and thresholding. We prove that they achieve (near) optimal rates of convergence under the mean squared err...
متن کامل