Meanders and the Temperley-Lieb algebra

نویسندگان

  • P. Di Francesco
  • O. Golinelli
چکیده

The statistics of meanders is studied in connection with the Temperley-Lieb algebra. Each (multi-component) meander corresponds to a pair of reduced elements of the algebra. The assignment of a weight q per connected component of meander translates into a bilinear form on the algebra, with a Gram matrix encoding the fine structure of meander numbers. Here, we calculate the associated Gram determinant as a function of q, and make use of the orthogonalization process to derive alternative expressions for meander numbers as sums over correlated random walks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meander Determinants

We prove a determinantal formula for quantities related to the problem of enumeration of (semi-) meanders, namely the topologically inequivalent planar configurations of non-self-intersecting loops crossing a given (half-) line through a given number of points. This is done by the explicit Gram-Schmidt orthogonalization of certain bases of subspaces of the Temperley-Lieb algebra.

متن کامل

Virtual Extension of Temperley–lieb Algebra

The virtual knot theory is a new interesting subject in the recent study of low dimensional topology. In this paper, we explore the algebraic structure underlying the virtual braid group and call it the virtual Temperley–Lieb algebra which is an extension of the Temperley–Lieb algebra by adding the group algebra of the symmetrical group. We make a connection clear between the Brauer algebra and...

متن کامل

Commuting families in Hecke and Temperley-Lieb Algebras

We define analogs of the Jucys-Murphy elements for the affine Temperley-Lieb algebra and give their explicit expansion in terms of the basis of planar Brauer diagrams. These Jucys-Murphy elements are a family of commuting elements in the affine Temperley-Lieb algebra, and we compute their eigenvalues on the generic irreducible representations. We show that they come from Jucys-Murphy elements i...

متن کامل

Dual Presentation and Linear Basis of Temperley-lieb Algebra

The braid groups map homomorphically into the Temperley-Lieb algebras. Recently, Zinno showed that the homomorphic images of the simple elements arising from the dual presentation of the braid groups form a basis for the vector space underlying the Temperley-Lieb algebras. We give a simple geometric proof of his theorem, using a new presentation of the Temperley-Lieb algebras that corresponds t...

متن کامل

. R A ] 2 8 A ug 2 00 4 DESCRIPTION OF THE CENTER OF THE AFFINE TEMPERLEY - LIEB ALGEBRA OF TYPE Ã

Construction of the diagrammatic version of the affine Temperley-Lieb algebra of type A N as a subring of matrices over the Laurent polynomials is given. We move towards geometrical understanding of cellular structure of the Temperley-Lieb algebra. We represent its center as a coordinate ring of the certain affine algebraic variety and describe this variety constructing its desingularization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996