Limit theorems for geometric functionals of Gibbs point processes

نویسندگان

  • T. Schreiber
  • J. E. Yukich
چکیده

Observations are made on a point process Ξ in R in a window Qλ of volume λ. The observation, or ‘score’ at a point x, here denoted ξ(x, Ξ), is a function of the points within a random distance of x. When the input Ξ is a Poisson or binomial point process, the large λ limit theory for the total score ∑ x∈Ξ∩Qλ ξ(x, Ξ ∩Qλ), when properly scaled and centered, is well understood. In this paper we establish general laws of law numbers, variance asymptotics, and central limit theorems for the total score for Gibbsian input Ξ. The proofs use perfect simulation of Gibbs point processes to establish their mixing properties. The general limit results are applied to random sequential packing and spatial birth growth models, Voronoi and other Euclidean graphs, percolation models, and quantization problems involving Gibbsian input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization and limit theorems for geometric functionals of Gibbs point processes

Given a Gibbs point process P on R having a weak enough potential Ψ, we consider the random measures μλ := P x∈P∩Qλ ξ(x,P ∩Qλ)δx/λ1/d , where Qλ := [−λ /2, λ/2] is the volume λ cube and where ξ(·, ·) is a translation invariant stabilizing functional. Subject to Ψ satisfying a localization property and translation invariance, we establish weak laws of large numbers for λ−1μλ(f), f a bounded test...

متن کامل

CLT for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields

Our interest in this paper is to explore limit theorems for various geometric functionals of excursion sets of isotropic Gaussian random fields. In the past, limit theorems have been proven for various geometric functionals of excursion sets/sojourn times ( see [4, 13, 14, 18, 22, 25] for a sample of works in such settings). The most recent addition being [6] where a central limit theorem (CLT)...

متن کامل

Functionals of spatial point process having density with respect to the Poisson process

U -statistics of spatial point processes given by a density with respect to a Poisson process are investigated. In the first half of the paper general relations are derived for the moments of the functionals using kernels from the Wiener–Itô chaos expansion. In the second half we obtain more explicit results for a system of U -statistics of some parametric models in stochastic geometry. In the ...

متن کامل

Local Limit Theorems for Gibbs{markov Maps

We prove conditional local limit theorems for Gibbs-Markov processes whose marginals are in the domain of attraction of a stable law with order in (0;2). c 1996.

متن کامل

Brownian limits, local limits, extreme value and variance asymptotics for convex hulls in the ball

The paper [40] establishes an asymptotic representation for random convex polytope geometry in the unit ball Bd, d ≥ 2, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of the so-called generalized paraboloid growth process. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011