Transition from static to kinetic friction: insights from a 2D model.
نویسندگان
چکیده
We describe a 2D spring-block model for the transition from static to kinetic friction at an elastic-slider-rigid-substrate interface obeying a minimalistic friction law (Amontons-Coulomb). By using realistic boundary conditions, a number of previously unexplained experimental results on precursory microslip fronts are successfully reproduced. From the analysis of the interfacial stresses, we derive a prediction for the evolution of the precursor length as a function of the applied loads, as well as an approximate relationship between microscopic and macroscopic friction coefficients. We show that the stress buildup due to both elastic loading and microslip-related relaxations depends only weakly on the underlying shear crack propagation dynamics. Conversely, crack speed depends strongly on both the instantaneous stresses and the friction coefficients, through a nontrivial scaling parameter.
منابع مشابه
Development of a New Dynamic Friction Model for Analytical Modeling of Elliptical Vibration Assisted Turning Process
A new dynamic friction model for modeling of elliptical vibration assisted turning (EVAT) was developed in this research. The periodic change of the friction force direction is known to be one of the most important causes of this phenomenon. In modeling of machining processes (including the EVAT process), static Coulomb friction model was employed by most of the researchers. Because of the peri...
متن کاملDevelopment of a New Dynamic Friction Model for Analytical Modeling of Elliptical Vibration Assisted Turning Process
A new dynamic friction model for modeling of elliptical vibration assisted turning (EVAT) was developed in this research. The periodic change of the friction force direction is known to be one of the most important causes of this phenomenon. In modeling of machining processes (including the EVAT process), static Coulomb friction model was employed by most of the researchers. Because of the peri...
متن کاملConstitutive equation of friction based on the subloading-surface concept
The subloading-friction model is capable of describing static friction, the smooth transition from static to kinetic friction and the recovery to static friction after sliding stops or sliding velocity decreases. This causes a negative rate sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity). A generalized subloading-friction model is formulated in this article...
متن کاملStatic friction on the fly: velocity depinning transitions of lubricants in motion.
The dragging velocity of a model solid lubricant confined between sliding periodic substrates exhibits a phase transition between two regimes, respectively, with quantized and with continuous lubricant center-of-mass velocity. The transition, occurring for increasing external driving force F ext acting on the lubricant, displays a large hysteresis, and has the features of depinning transitions ...
متن کاملContrasting static-to-kinetic friction transitions on layers of an autophobically dewetted polymer film using Fourier-analyzed shear modulation force microscopy
Fourier analysis of oscillating forces at a laterally modulated tip provides new insight into static-to-kinetic friction transitions on ultrathin polyvinyl alcohol (PVA) films. In addition to contrast in sliding friction, layers of autophobically dewetted PVA films exhibit remarkable contrast in the transition from static to kinetic friction as derived from spatially resolved Fourier analysis. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 107 7 شماره
صفحات -
تاریخ انتشار 2011