A Mode-of-Action Approach for the Identification of Genotoxic Carcinogens
نویسندگان
چکیده
Distinguishing between clastogens and aneugens is vital in cancer risk assessment because the default assumption is that clastogens and aneugens have linear and non-linear dose-response curves, respectively. Any observed non-linearity must be supported by mode of action (MOA) analyses where biological mechanisms are linked with dose-response evaluations. For aneugens, the MOA has been well characterised as disruptors of mitotic machinery where chromosome loss via micronuclei (MN) formation is an accepted endpoint used in risk assessment. In this study we performed the cytokinesis-block micronucleus assay and immunofluorescence mitotic machinery visualisation in human lymphoblastoid (AHH-1) and Chinese Hamster fibroblast (V79) cell lines after treatment with the aneugen 17-β-oestradiol (E₂). Results were compared to previously published data on bisphenol-A (BPA) and Rotenone data. Two concentration-response approaches (the threshold-[Td] and benchmark-dose [BMD] approaches) were applied to derive a point of departure (POD) for in vitro MN induction. BMDs were also derived from the most sensitive carcinogenic endpoint. Ranking comparisons of the PODs from the in vitro MN and the carcinogenicity studies demonstrated a link between these two endpoints for BPA, E₂ and Rotenone. This analysis was extended to include 5 additional aneugens, 5 clastogens and 3 mutagens and further concentration and dose-response correlations were observed between PODs from the in vitro MN and carcinogenicity. This approach is promising and may be further extended to other genotoxic carcinogens, where MOA and quantitative information from the in vitro MN studies could be used in a quantitative manner to further inform cancer risk assessment.
منابع مشابه
The distinct health risk analyses required for genotoxic carcinogens and promoting agents.
Health risk analysis needs to apply newer developments in the understanding of the underlying mechanisms of the carcinogenic process which has allowed for the classification of chemical carcinogens into those that damage genetic material directly (genotoxic carcinogens) and those that operate by indirect or epigenetic mechanisms. We propose a systematic decision point approach for detecting and...
متن کاملNew aspects in the classification of carcinogens.
The existing systems of classification of carcinogens should include a distinction between genotoxic and non-genotoxic chemicals. For non-genotoxic chemicals, permissible exposure levels can be derived at which no relevant human cancer risks are anticipated. While genotoxic carcinogens can induce chromosomal effects without mutagenic action, non-DNA-reactive genotoxins affecting topoisomerase o...
متن کاملDamage identification of structures using second-order approximation of Neumann series expansion
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
متن کاملGenotoxic and Carcinogenic Effect of Gutkha: A Fast-growing Smokeless Tobacco
Oral cancer is a highly lethal disease and one of the most debilitating and disfiguring of all malignancies in the world. According to Global Adult Tobacco Survey (GATS) 2010 report, 60% of tobacco users in India use only smokeless tobacco. Among 206 million smokeless tobacco users, 65.1 million are consuming gutkha. In recent years, gutkha is recognized as a life threatening disorder with the ...
متن کاملInvestigating the Different Mechanisms of Genotoxic and Non-Genotoxic Carcinogens by a Gene Set Analysis
Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic carcinogens for health care and pharm...
متن کامل