Modified Back Propagation Algorithm for CNN Template Design
نویسندگان
چکیده
In the previous study, we have proposed a template design method of cellular neural networks with back propagation algorithm. In that method, template learns by using the average error which corresponds to the difference between the output image and the desired image. In this study, we modify the back propagation algorithm for cellular neural networks template design. We inspect the performance of this learning algorithm for two-dimensional binary image.
منابع مشابه
CNN Template Learning To Obtain Desired Images Using Back Propagation Algorithm
Cellular neural networks (CNN) were introduced by Chua and Yang in 1998 [1]. The idea of the CNN was inspired from the architecture of the cellular automata and the neural networks. Unlike the conventional neural networks, the CNN has local connectivity property. Since the structure of the CNN resembles the structure of animals retina, the CNN can be used for various image processing applicatio...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملA New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA
Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...
متن کاملA Novel Cloning Template Designing Method by Using an Artificial Bee Colony Algorithm for Edge Detection of CNN Based Imaging Sensors
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures withi...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کامل