Robust multi-camera view face recognition

نویسندگان

  • Dakshina Ranjan Kisku
  • Hunny Mehrotra
  • Phalguni Gupta
  • Jamuna Kanta Sing
چکیده

This paper presents multi-appearance fusion of Principal Component Analysis (PCA) and generalization of Linear Discriminant Analysis (LDA) for multi-camera view offline face recognition (verification) system. The generalization of LDA has been extended to establish correlations between the face classes in the transformed representation and this is called canonical covariate. The proposed system uses Gabor filter banks for characterization of facial features by spatial frequency, spatial locality and orientation to make compensate to the variations of face instances occurred due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images produces Gabor face representations with high dimensional feature vectors. PCA and canonical covariate are then applied on the Gabor face representations to reduce the high dimensional feature spaces into low dimensional Gabor eigenfaces and Gabor canonical faces. Reduced eigenface vector and canonical face vector are fused together using weighted mean fusion rule. Finally, support vector machines (SVM) have trained with augmented fused set of features and perform the recognition task. The system has been evaluated with UMIST face database consisting of multiview faces. The experimental results demonstrate the efficiency and robustness of the proposed system for multi-view face images with high recognition rates. Complexity analysis of the proposed system is also presented at the end of the experimental results.

منابع مشابه

Face Recognition in Multi Camera Network with Sh Feature

Multi view face recognition using multiple camera networks is an active research area. The main aim of this paper is to handle different pose variations in multi camera network and recognizing face from those videos. The traditional approaches handle the pose estimation explicitly ,the proposed work will handle the multiple views of the poses .For a given set of multi view video sequences we us...

متن کامل

Robust Video-based Face Recognition

In recent years, multi-camera networks have become increasingly common for biometric and surveillance systems. Multi view face recognition has become an active research area in recent years. In this paper, an approach for video-based face recognition in camera networks is proposed. Traditional approaches estimate the pose of the face explicitly. A robust feature for multi-view recognition that ...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Database Construction & Recognition for Multi-view face

We present data collection and recognition experiment focused on multi-view face recognition/descriptor. Many face databases and face recognition systems have been constructed and experimented in terms of various illumination, time, poses, or expressions. However none of databases yet satisfies a large variation of poses to study systematic 3D human face information, which results unsatisfactor...

متن کامل

2D-3D Mixed Face Recognition Schemes

Automatic recognition of people is a challenging problem which has received much attention during the recent years [FRHomepage, AFGR, AVBPA] due to its potential applications in different fields such as law enforcement, security applications or video indexing. Face recognition is a very challenging problem and up to date, there is no technique that provides a robust solution to all situations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • CoRR

دوره abs/1003.5861  شماره 

صفحات  -

تاریخ انتشار 2010