Polynomial Extension Operators

نویسندگان

  • JAYADEEP GOPALAKRISHNAN
  • JOACHIM SCHÖBERL
چکیده

Consider the tangential trace of a vector polynomial on the surface of a tetrahedron. We construct an extension operator that extends such a trace function into a polynomial on the tetrahedron. This operator can be continuously extended to the trace space of H(curl ). Furthermore, it satisfies a commutativity property with an extension operator we constructed in Part I of this series. Such extensions are a fundamental ingredient of high order finite element analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Skew Polynomial Approach to Integro - Differential Operators Georg

We construct the algebra of integro-differential operators over an ordinary integro-differential algebra directly in terms of normal forms. In the case of polynomial coefficients, we use skew polynomials for defining the integro-differential Weyl algebra as a natural extension of the classical Weyl algebra in one variable. Its normal forms, algebraic properties and its relation to the localizat...

متن کامل

Polynomial extension operators. Part III

In this concluding part of a series of papers on tetrahedral polynomial extension operators, the existence of a polynomial extension operator in the Sobolev space H(div) is proven constructively. Specifically, on any tetrahedron K, given a function w on the boundary ∂K that is a polynomial on each face, the extension operator applied to w gives a vector function whose components are polynomials...

متن کامل

Polynomial Extension Operators. Part II

Consider the tangential trace of a vector polynomial on the surface of a tetrahedron. We construct an extension operator that extends such a trace function into a polynomial on the tetrahedron. This operator can be continuously extended to the trace space of H(curl ). Furthermore, it satisfies a commutativity property with an extension operator we constructed in Part I of this series. Such exte...

متن کامل

Intertwining technique for the one-dimensional stationary Dirac equation

The technique of differential intertwining operators (or Darboux transformation operators) is systematically applied to the one-dimensional Dirac equation. The following aspects are investigated: factorization of a polynomial of Dirac Hamiltonians, quadratic supersymmetry, closed extension of transformation operators, chains of transformations, and finally particular cases of pseudoscalar and s...

متن کامل

Extensions of the Frobenius to ring of differential operators on polynomial algebra in prime characteristic

Let K be a field of characteristic p > 0. It is proved that each automorphism σ ∈ AutK(D(Pn)) of the ring D(Pn) of differential operators on a polynomial algebra Pn = K[x1, . . . , xn] is uniquely determined by the elements σ(x1), . . . , σ(xn), and the set Frob(D(Pn)) of all the extensions of the Frobenius from certain maximal commutative polynomial subalgebras of D(Pn), like Pn, is equal to A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009