Effects of Healthy Ageing on Activation Pattern within the Primary Motor Cortex during Movement and Motor Imagery: An fMRI Study
نویسندگان
چکیده
The increase in older adults over the coming decades will be accompanied by a greater burden of chronic neurological diseases affecting the motor system. The motor system adapts to maintain motor performance with the primary motor cortex (BA4) emerging as a pivotal node within this neuroplastic process. Studies of ageing often consider BA4 a homogenous area but cytoarchitectonic studies have revealed two subdivisions, an anterior (BA4a) and posterior subdivision (BA4p). Here we focus upon the effects of ageing on the involvement of BA4a and BA4p during movement and motor imagery (MI). Thirty-one right-handed healthy volunteers were recruited and screened for their ability to perform imagery (5 subjects excluded). The sample was split into an older group (n = 13, mean age 56.4 SD 9.4) and a younger group (n = 13, mean age 27.4 SD 5.3). We used an fMRI block-design (auditory-paced [1 Hz] right hand finger-thumb opposition sequence [2,3,4,5, 2...]) with MI & rest and actual movement & rest. We explored the distribution-based clustering and weighted laterality index within BA4a and BA4p. The involvement of BA4p during MI (measured with distribution-based clustering) was significantly greater in the older group (p<0.05) than in the younger group. Hemispheric balance of BA4p decreased with age during MI (Spearman rho -0.371; p<0.05), whereas that of BA4a decreased with age during actual movement (Spearman rho = -0.458 p<0.01). Irrespective of age, we found BA4 is involved during motor imagery, strengthening the rationale for its potential use in older subjects. These findings suggest that the functions of the subdivisions of BA4 are differentially affected by ageing and have implications regarding how ageing affects the cognitive processes underlying motor functions.
منابع مشابه
What disconnection tells about motor imagery: evidence from paraplegic patients.
Brain activation during motor imagery has been the subject of a large number of studies in healthy subjects, leading to divergent interpretations with respect to the role of descending pathways and kinesthetic feedback on the mental rehearsal of movements. We investigated patients with complete spinal cord injury (SCI) to find out how the complete disruption of motor efferents and sensory affer...
متن کاملCortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients
Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatos...
متن کاملSensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study.
BACKGROUND Although the consequences of spinal cord injury (SCI) within the spinal cord and peripheral nervous system have been studied extensively, the influence of SCI on supraspinal structures during recovery remains largely unexplored. OBJECTIVE To assess temporal changes in cortical sensorimotor representations beginning in the subacute phase following SCI and determine if an association...
متن کاملActivation of the Parieto-Premotor Network Is Associated with Vivid Motor Imagery—A Parametric fMRI Study
The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کامل