Robust Feature Vector Set Using Higher Order Autocorrelation Coefficients
نویسندگان
چکیده
In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lower orders, while the higher-order autocorrelation coefficients are least affected, this method discards the lower order autocorrelation coefficients and uses only the higherorder autocorrelation coefficients for spectral estimation. The magnitude spectrum of the windowed higher-order autocorrelation sequence is used here as an estimate of the power spectrum of the speech signal. This power spectral estimate is processed further by the Mel filter bank; a log operation and the discrete cosine transform to get the cepstral coefficients. These cepstral coefficients are referred to as the Differentiated Relative Higher Order Autocorrelation Coefficient Sequence Spectrum (DRHOASS). The authors evaluate the speech recognition performance of the DRHOASS features and show that they perform as well as the MFCC features for clean speech and their recognition performance is better than the MFCC features for noisy speech. DOI: 10.4018/978-1-4666-1743-8.ch009
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملNovel Feature Vector Set Extraction using Spectral Peaks in Autocorrelation Domain
This paper presents a new feature vector set for noisy speech recognition in autocorrelation domain. The autocorrelation domain is well known for its pole preserving and noise separation properties. In this paper we will use the autocorrelation domain as an appropriate candidate for robust feature extraction. In our approach, extraction of mel frequency cepstral coefficients (MFCC) of the speec...
متن کاملRobust Features for Noisy Speech Recognition using MFCC Computation from Magnitude Spectrum of Higher Order Autocorrelation Coefficients
Noise robustness is one of the most challenging problem in automatic speech recognition. The goal of robust feature extraction is to improve the performance of speech recognition in adverse conditions. The mel-scaled frequency cepstral coefficients (MFCCs) derived from Fourier transform and filter bank analysis are perhaps the most widely used front-ends in state-of-the-art speech recognition s...
متن کاملNumber 8
Noise robustness is one of the most challenging problem in automatic speech recognition. The goal of robust feature extraction is to improve the performance of speech recognition in adverse conditions. The mel-scaled frequency cepstral coefficients (MFCCs) derived from Fourier transform and filter bank analysis are perhaps the most widely used front-ends in state-of-the-art speech recognition s...
متن کاملFeature extraction from higher-lag autocorrelation coefficients for robust speech recognition
In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lowertime lags, while the higher-lag autocorrelation coefficients are least affected, this method discards the lower-lag autocorrelation coefficients and uses o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJCINI
دوره 4 شماره
صفحات -
تاریخ انتشار 2010