Exact Treatment of the Dispersion and Beam Interaction Impedance of a Thin Tape Helix Surrounded by a Radially Stratified Dielectric
نویسنده
چکیده
An exact dispersion relation is obtained for electromagnetic waves propagating on a thin metallic tape helix of arbitrary width, supported by a radially stratified dielectric layer and enclosed by a metallic shell. By expanding the surface currents on the tape in a series of Chebyshev polynomials, the unquantifiable assumptions made in all previously published analyses of the tape helix regarding the forms of the surface current on the tape, or the electric fields at the radius of the tape, are avoided. The power flow and interaction impedance are exactly computed. The dispersion relation is solved numerically for slow waves and the resulting phase velocity and interaction impedance are compared to those computed using the frequently made assumptions of constant current along the tape and zero current across the tape. It is found that for wide tapes significant errors are made in both the phase velocity and interaction impedance when neglecting the transverse variation of the longitudinal current and neglecting the transverse current. For narrow tapes, the two approaches agree to good accuracy. Plots of the surface currents for wide and narrow tapes are presented. The longitudinal current shows a significant variation across the tape. An example is given showing the existence of an optimum tape width, at which the on-axis interaction impedance is maximized. It is separately shown how an approximate, but useful model of metallic vanes may be incorporated in the analysis by the modification of certain boundary conditions. In all cases, computations of phase velocity and impedance across a wide frequency band take well under a minute on a modern workstation.
منابع مشابه
A Simple Analysis of Helical Slow-wave Structure Loaded by Dielectric Embedded Metal Segments for Wideband Traveling- Wave Tubes
A simple field analysis was developed for helical slowwave structure symmetrically supported by rectangular shaped discrete dielectric support rods partially embedded in the metal segments projecting radially inward from a metal envelope for wideband traveling-wave tubes. The tape helix model was used for the prediction of the dispersion relation and the interaction impedance characteristics. T...
متن کاملTheory of Nonlinear s-Polarized Phonon-Polaritons in Multilayered Structures
A theory is presented for the dispersion relations of the nonlinear phonon-polaritons arising when phonons are coupled to the electromagnetic waves in multilayered structures of nonlinear materials. The calculations are applied to a multilayered structure consisting of a thin film surrounded by semi-infinite bounding media where each layer may have a frequency dependent dielectric function and ...
متن کاملInvestigations on structural and electrical properties of Cadmium Zinc Sulfide thin films
Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...
متن کاملInvestigations on structural and electrical properties of Cadmium Zinc Sulfide thin films
Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...
متن کاملStructural, Electrical, and impedance spectroscopy studies of Barium substituted nano calcium ferrites synthesized by solution combustion method.
Barium substituted nanocrystalline ferrites with chemical composition BaxCa1-xFe2O4 (x =0.0 to 0.25) BCAF were prepared by solution combustion method. The phase formation of mixed spinal structured ferrites was confirmed by PXRD analysis. The average crystallite size was calculated using Debye-Scherrer formula and it was found to be in the range of 27-44 nm. Surface morphology was analyzed by S...
متن کامل