Estimation of all-terminal network reliability using an arti"cial neural network
نویسندگان
چکیده
The exact calculation of all-terminal network reliability is an NP-hard problem, with computational e!ort growing exponentially with the number of nodes and links in the network. During optimal network design, a huge number of candidate topologies are typically examined with each requiring a network reliability calculation. Because of the impracticality of calculating all-terminal network reliability for networks of moderate to large size, Monte Carlo simulation methods to estimate network reliability and upper and lower bounds to bound reliability have been used as alternatives. This paper puts forth another alternative to the estimation of all-terminal network reliability* that of arti"cial neural network (ANN) predictive models. Neural networks are constructed, trained and validated using the network topologies, the link reliabilities, and a network reliability upperbound as inputs and the exact network reliability as the target. A hierarchical approach is used: a general neural network screens all network topologies for reliability followed by a specialized neural network for highly reliable network designs. Both networks with identical link reliability and networks with varying link reliability are studied. Results, using a grouped cross-validation approach, show that the ANN approach yields more precise estimates than the upperbound, especially in the worst cases. Using the reliability estimation methods of the ANN, the upperbound and backtracking, optimal network design by simulated annealing is considered. Results show that the ANN regularly produces superior network designs at a reasonable computational cost.
منابع مشابه
Arti cial Neural Networks Based Dynamic Weight Estimation with Optical Arrangement
In this essay, an optical arrangement for the measurement of dynamic weight, by means of conducting a thin ray of light through it, is designed in order to enhance the measuring accuracy in the weight-estimation device. In this arrangement, CCD is responsible for producing raw data for processing. An arti cial neural network type, RBF, is also used to improve the quality and speed of the measur...
متن کاملEvolving Neural Networks for Chlorophyll a Prediction
This paper studies the application of evolutionary arti cial neural networks to chlorophyll a pre diction in Lake Kasumigaura Unlike previous applications of arti cial neural networks in this eld the architecture of the arti cial neural network is evolved automatically rather than designed man ually The evolutionary system is able to nd a near optimal architecture of the arti cial neural networ...
متن کاملEvolutionary Arti cial Neural Networks 12 Xin
Evolutionary arti cial neural networks (EANNs) [1] result from combinations of arti cial neural networks (ANNs) and evolutionary search procedures such as genetic algorithms (GAs). This article introduces the concept of EANNs, reviews the current state-of-the-art and indicates possible future research directions. X. Yao: Evolutionary Arti cial Neural Networks 1
متن کاملEstimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization
In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...
متن کاملAn Arti cial Neural System Using Coherent Pulse Width and Edge Modulations
This paper describes a complete silicon implementation of an Arti cial Neural Network based on Coherent Pulse Width modulation techniques. A chip set with di erent neural functions has been designed, manufactured and tested. Neural circuits have been optimized for lowest computation energy and highest recon gurability.
متن کامل