On Combinatorial Descriptions of Homotopy Groups of Certain Spaces

نویسنده

  • JIE WU
چکیده

We will give a combinatorial description of the homotopy groups for the suspension ofK(π, 1) and wedges of 2-spheres. In particular, all of the homotopy groups of the 2-sphere are given as the centers of certain combinatorially described groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial group theory and the homotopy groups of finite complexes

A description of homotopy groups of the 2-dimensional sphere in terms of combinatorial group theory was discovered by the second author in 1994 and given in his thesis [25], with a published version in [27]. In this article we give a combinatorial description of the homotopy groups of k-dimensional spheres with k ≥ 3. The description is given by identifying the homotopy groups as the center of ...

متن کامل

1 4 A ug 1 99 5 ON COMBINATORIAL DESCRIPTIONS OF HOMOTOPY GROUPS OF Σ K ( π , 1 )

We give a combinatorial description of homotopy groups of ΣK(π, 1). In particular, all of the homotopy groups of the 3sphere are combinatorially given.

متن کامل

On Combinatorial Descriptions of Homotopy Groups of ΣK(π, 1)∗

We will give a combinatorial description of homotopy groups of ΣK(π, 1). In particular, all of the homotopy groups of the 3-sphere are combinatorially given.

متن کامل

A-homotopy groups, excision, and solvable quotients

We study some properties of A-homotopy groups: geometric interpretations of connectivity, excision results, and a re-interpretation of geometric quotients by solvable groups in terms of covering spaces in the sense of A-homotopy theory. These concepts and results are well-suited to the study of certain quotients via geometric invariant theory. As a case study in geometry of solvable group quoti...

متن کامل

Combinatorial Description of the Homotopy Groups of Wedge of Spheres

In this paper, we give a combinatorial description of the homotopy groups of a wedge of spheres. This result generalizes that of J. Wu on the homotopy groups of a wedge of 2-spheres. In particular, the higher homotopy groups of spheres are given as the centers of certain combinatorially described groups with special generators and relations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998