Representations of Khovanov-lauda-rouquier Algebras Iii: Symmetric Affine Type

نویسنده

  • PETER J MCNAMARA
چکیده

We develop the homological theory of KLR algebras of symmetric affine type. For each PBW basis, a family of standard modules is constructed which categorifies the PBW basis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Dimensional Representations of Khovanov-lauda-rouquier Algebras I: Finite Type

We classify simple representations of Khovanov-Lauda-Rouquier algebras in finite type. The classification is in terms of a standard family of representations that is shown to yield the dual PBW basis in the Grothendieck group. Finally, we describe the global dimension of these algebras.

متن کامل

Representations of Khovanov-lauda-rouquier Algebras and Combinatorics of Lyndon Words

We construct irreducible representations of affine KhovanovLauda-Rouquier algebras of arbitrary finite type. The irreducible representations arise as simple heads of appropriate induced modules, and thus our construction is similar to that of Bernstein and Zelevinsky for affine Hecke algebras of type A. The highest weights of irreducible modules are given by the so-called good words, and the hi...

متن کامل

Graded Cellular Bases for the Cyclotomic Khovanov-lauda-rouquier Algebras of Type A

This paper constructs an explicit homogeneous cellular basis for the cyclotomic Khovanov–Lauda–Rouquier algebras of type A over a field.

متن کامل

Representation Theory of Symmetric Groups and Related Hecke Algebras

We survey some fundamental trends in representation theory of symmetric groups and related objects which became apparent in the last fifteen years. The emphasis is on connections with Lie theory via categorification. We present results on branching rules and crystal graphs, decomposition numbers and canonical bases, graded representation theory, connections with cyclotomic and affine Hecke alge...

متن کامل

Fully commutative elements of type D and homogeneous representations of KLR-algebras

In this paper, we decompose the set of fully commutative elements into natural subsets when the Coxeter group is of type Dn, and study combinatorics of these subsets, revealing hidden structures. (We do not consider type An first, since a similar decomposition for type An is trivial.) As an application, we classify and enumerate the homogeneous representations of the Khovanov–Lauda– Rouquier al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016