TALEs from a Spring – Superelasticity of Tal Effector Protein Structures
نویسندگان
چکیده
Transcription activator-like effectors (TALEs) are DNA-related proteins that recognise and bind specific target sequences to manipulate gene expression. Recently determined crystal structures show that their common architecture reveals a superhelical overall structure that may undergo drastic conformational changes. To establish a link between structure and dynamics in TALE proteins we have employed coarse-grained elastic-network modelling of currently available structural data and implemented a force-probe setup that allowed us to investigate their mechanical behaviour in computer experiments. Based on the measured force-extension curves we conclude that TALEs exhibit superelastic dynamical properties allowing for large-scale global conformational changes along their helical axis, which represents the soft direction in such proteins. For moderate external forcing the TALE models behave like linear springs, obeying Hooke's law, and the investigated structures can be characterised and compared by a corresponding spring constant. We show that conformational flexibility underlying the large-scale motions is not homogeneously distributed over the TALE structure, but instead soft spot residues around which strain is accumulated and which turn out to represent key agents in the transmission of conformational motions are identified. They correspond to the RVD loop residues that have been experimentally determined to play an eminent role in the binding process of target DNA.
منابع مشابه
Complete Genome Sequencing and Targeted Mutagenesis Reveal Virulence Contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in Bacterial Leaf Streak of Wheat
Bacterial leaf streak caused by Xanthomonas translucens pv. undulosa (Xtu) is an important disease of wheat (Triticum aestivum) and barley (Hordeum vulgare) worldwide. Transcription activator-like effectors (TALEs) play determinative roles in many of the plant diseases caused by the different species and pathovars of Xanthomonas, but their role in this disease has not been characterized. ICMP11...
متن کاملAn Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains
Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexe...
متن کاملRapid and efficient genome-wide characterization of Xanthomonas TAL effector genes
Xanthomonas TALE transcriptional activators act as virulence or avirulence factors by activating host disease susceptibility or resistance genes. Their specificity is determined by a tandem repeat domain. Some Xanthomonas pathogens contain 10-30 TALEs per strain. Although TALEs play critical roles in pathogenesis, their studies have so far been limited to a few examples, due to their highly rep...
متن کاملSTAR: a simple TAL effector assembly reaction using isothermal assembly
Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables indivi...
متن کاملContext influences on TALE–DNA binding revealed by quantitative profiling
Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA intera...
متن کامل