Applying multiple classifiers and non-linear dynamics features for detecting sleepiness from speech
نویسندگان
چکیده
Comparing different novel feature sets and classifiers for speech processing based fatigue detection is the primary aim of this study. Thus, we conducted a within-subject partial sleep deprivation design (20.00–04.00 h, N1⁄477 participants) and recorded 372 speech samples of sustained vowel phonation. The self-report on the Karolinska Sleepiness Scale (KSS) and an observer report on the KSS, the KSS Observer Scale were applied to determine sleepiness reference values. Feature extraction methods of non-linear dynamics (NLD) provide additional information regarding the dynamics and structure of sleepiness speech. In all, 395 NLD features and the 170 phonetic features, which have been computed partially, represent so far unknown auditive-perceptual concepts. Several NLD and phonetic features show significant correlations to KSS ratings, e.g., from the NLD features for male speakers the skewness of vector length within reconstructed phase space (r1⁄4 .56), and for female speaker the mean of Cao’s minimum embedding dimensions (r1⁄4 .39). After a correlation-filter feature subset selection different classification models and ensemble classifiers (by AdaBoost, Bagging) were trained. Bagging procedures turned out to achieve best performance for male and female speakers on the phonetic and the NLD feature set. The best models for the phonetic feature set achieved 78.3% (Naı̈veBayes) for male and 68.5% (Bagging Bayes Net) for female speaker classification accuracy in detecting sleepiness. The best model for the NLD feature set achieved 77.2% (Bagging Bayes Net) for male and 76.8% (Bagging Bayes Net) for female speakers. Nevertheless, employing the combined phonetic and NLD feature sets provided additional information and thus resulted in an improved highest UA of 79.6% for male (Bayes Net) and 77.1% for female (AdaBoost Nearest Neighbor) speakers. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Running head: Non-Linear Dynamics Features for Detecting Sleepiness Applying Multiple Classifiers and Non-Linear Dynamics Features for Detecting Sleepiness from Speech
Comparing different novel feature sets and classifiers for speech processing based fatigue detectionis is the primary aim of this study. Thus, we conducted a within-subject partial sleep deprivation design (20.00 04.00 h, N = 77 participants) and recorded 372 speech samples of sustained vowel phonation. The self-report on the Karolinska Sleepiness Scale (KSS), and an observer report on the KSS,...
متن کاملDetecting Sleepiness by Fusing Classifiers Trained with Novel Acoustic Features
Automatic sleepiness detection is a challenging task that can lead to advances in various domains including traffic safety, medicine and human-machine interaction. This paper analyzes the discriminative power of different acoustic features to detect sleepiness. The study uses the sleepy language corpus (SLC). Along with standard acoustic features, novel features are proposed including functiona...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملModel comparison for automatic characterization and classification of average ERPs using visual oddball paradigm.
OBJECTIVE To determine whether automated classifiers can be used for correctly identifying target categorization responses from averaged event-related potentials (ERPs) along with identifying appropriate features and classification models for computer-assisted investigation of attentional processes. METHODS ERPs were recorded during a target categorization task. Automated classification of av...
متن کاملDeception detecting from speech signal using relevance vector machine and non-linear dynamics features
The novel method of deception detecting based on speech signal is proposed in this study. Extracting prosodic and non-linear dynamics (NLD) feature sets from speech signal and applying relevance vector machine (RVM) classification method is the primary target of this paper. Here, the sustained speakerdepended phonation samples of deception and non-deception were applied. In this paper, 30 proso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 84 شماره
صفحات -
تاریخ انتشار 2012