Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests.
نویسندگان
چکیده
Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of alpha and alpha+beta proteins [60-70 residues with C(alpha) rms deviation (rmsd) <6 A]. However, for alpha+beta proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two alpha and three alpha+beta, with sizes of 53-235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue alpha+beta protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-A C(alpha) rmsd. So far this protein is the largest alpha+beta protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly alpha-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 A rmsd, except the 32 C-terminal residues, most of which form a beta-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction.
منابع مشابه
Lessons from application of the UNRES force field to predictions of structures of CASP10 targets.
The performance of the physics-based protocol, whose main component is the United Residue (UNRES) physics-based coarse-grained force field, developed in our laboratory for the prediction of protein structure from amino acid sequence, is illustrated. Candidate models are selected, based on probabilities of the conformational families determined by multiplexed replica-exchange simulations, from t...
متن کاملHierarchical Energy-Based Approach to Protein-Structure Prediction: Blind-Test Evaluation with CASP3 Targets
A hierarchical approach based exclusively on finding the global minimum of an appropriate potential energy function, without the aid of secondary structure prediction, multiple-sequence alignment, or threading, is proposed. The procedure starts from an extensive search of the conformational space of a protein, using our recently developed united-residue off-lattice UNRES force field and the con...
متن کاملImplementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field.
The kinetic-trapping problem in simulating protein folding can be overcome by using a Replica Exchange Method (REM). However, in implementing REM in molecular dynamics simulations, synchronization between processors on parallel computers is required, and communication between processors limits its ability to sample conformational space in a complex system efficiently. To minimize communication ...
متن کاملAb initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains.
We report the application of Langevin dynamics to the physics-based united-residue (UNRES) force field developed in our laboratory. Ten trajectories were run on seven proteins [PDB ID codes 1BDD (alpha; 46 residues), 1GAB (alpha; 47 residues), 1LQ7 (alpha; 67 residues), 1CLB (alpha; 75 residues), 1E0L (beta; 28 residues), and 1E0G (alpha+beta; 48 residues), and 1IGD (alpha+beta; 61 residues)] w...
متن کاملThe protein folding problem: global optimization of the force fields.
The evolutionary development of a theoretical approach to the protein folding problem, in our laboratory, is traced. The theoretical foundations and the development of a suitable empirical all-atom potential energy function and a global optimization search are examined. Whereas the all-atom approach has thus far succeeded for relatively small molecules and for alpha-helical proteins containing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 21 شماره
صفحات -
تاریخ انتشار 2005